Step |
Hyp |
Ref |
Expression |
1 |
|
gsumpt.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
gsumpt.z |
⊢ 0 = ( 0g ‘ 𝐺 ) |
3 |
|
gsumpt.g |
⊢ ( 𝜑 → 𝐺 ∈ Mnd ) |
4 |
|
gsumpt.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
5 |
|
gsumpt.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) |
6 |
|
gsumpt.f |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
7 |
|
gsumpt.s |
⊢ ( 𝜑 → ( 𝐹 supp 0 ) ⊆ { 𝑋 } ) |
8 |
5
|
snssd |
⊢ ( 𝜑 → { 𝑋 } ⊆ 𝐴 ) |
9 |
6 8
|
feqresmpt |
⊢ ( 𝜑 → ( 𝐹 ↾ { 𝑋 } ) = ( 𝑎 ∈ { 𝑋 } ↦ ( 𝐹 ‘ 𝑎 ) ) ) |
10 |
9
|
oveq2d |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝐹 ↾ { 𝑋 } ) ) = ( 𝐺 Σg ( 𝑎 ∈ { 𝑋 } ↦ ( 𝐹 ‘ 𝑎 ) ) ) ) |
11 |
|
eqid |
⊢ ( Cntz ‘ 𝐺 ) = ( Cntz ‘ 𝐺 ) |
12 |
6 5
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑋 ) ∈ 𝐵 ) |
13 |
|
eqidd |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝑋 ) ( +g ‘ 𝐺 ) ( 𝐹 ‘ 𝑋 ) ) = ( ( 𝐹 ‘ 𝑋 ) ( +g ‘ 𝐺 ) ( 𝐹 ‘ 𝑋 ) ) ) |
14 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
15 |
1 14 11
|
elcntzsn |
⊢ ( ( 𝐹 ‘ 𝑋 ) ∈ 𝐵 → ( ( 𝐹 ‘ 𝑋 ) ∈ ( ( Cntz ‘ 𝐺 ) ‘ { ( 𝐹 ‘ 𝑋 ) } ) ↔ ( ( 𝐹 ‘ 𝑋 ) ∈ 𝐵 ∧ ( ( 𝐹 ‘ 𝑋 ) ( +g ‘ 𝐺 ) ( 𝐹 ‘ 𝑋 ) ) = ( ( 𝐹 ‘ 𝑋 ) ( +g ‘ 𝐺 ) ( 𝐹 ‘ 𝑋 ) ) ) ) ) |
16 |
12 15
|
syl |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝑋 ) ∈ ( ( Cntz ‘ 𝐺 ) ‘ { ( 𝐹 ‘ 𝑋 ) } ) ↔ ( ( 𝐹 ‘ 𝑋 ) ∈ 𝐵 ∧ ( ( 𝐹 ‘ 𝑋 ) ( +g ‘ 𝐺 ) ( 𝐹 ‘ 𝑋 ) ) = ( ( 𝐹 ‘ 𝑋 ) ( +g ‘ 𝐺 ) ( 𝐹 ‘ 𝑋 ) ) ) ) ) |
17 |
12 13 16
|
mpbir2and |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑋 ) ∈ ( ( Cntz ‘ 𝐺 ) ‘ { ( 𝐹 ‘ 𝑋 ) } ) ) |
18 |
17
|
snssd |
⊢ ( 𝜑 → { ( 𝐹 ‘ 𝑋 ) } ⊆ ( ( Cntz ‘ 𝐺 ) ‘ { ( 𝐹 ‘ 𝑋 ) } ) ) |
19 |
|
eqid |
⊢ ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) = ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) |
20 |
|
eqid |
⊢ ( 𝐺 ↾s ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ { ( 𝐹 ‘ 𝑋 ) } ) ) = ( 𝐺 ↾s ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ { ( 𝐹 ‘ 𝑋 ) } ) ) |
21 |
11 19 20
|
cntzspan |
⊢ ( ( 𝐺 ∈ Mnd ∧ { ( 𝐹 ‘ 𝑋 ) } ⊆ ( ( Cntz ‘ 𝐺 ) ‘ { ( 𝐹 ‘ 𝑋 ) } ) ) → ( 𝐺 ↾s ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ { ( 𝐹 ‘ 𝑋 ) } ) ) ∈ CMnd ) |
22 |
3 18 21
|
syl2anc |
⊢ ( 𝜑 → ( 𝐺 ↾s ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ { ( 𝐹 ‘ 𝑋 ) } ) ) ∈ CMnd ) |
23 |
1
|
submacs |
⊢ ( 𝐺 ∈ Mnd → ( SubMnd ‘ 𝐺 ) ∈ ( ACS ‘ 𝐵 ) ) |
24 |
|
acsmre |
⊢ ( ( SubMnd ‘ 𝐺 ) ∈ ( ACS ‘ 𝐵 ) → ( SubMnd ‘ 𝐺 ) ∈ ( Moore ‘ 𝐵 ) ) |
25 |
3 23 24
|
3syl |
⊢ ( 𝜑 → ( SubMnd ‘ 𝐺 ) ∈ ( Moore ‘ 𝐵 ) ) |
26 |
12
|
snssd |
⊢ ( 𝜑 → { ( 𝐹 ‘ 𝑋 ) } ⊆ 𝐵 ) |
27 |
19
|
mrccl |
⊢ ( ( ( SubMnd ‘ 𝐺 ) ∈ ( Moore ‘ 𝐵 ) ∧ { ( 𝐹 ‘ 𝑋 ) } ⊆ 𝐵 ) → ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ { ( 𝐹 ‘ 𝑋 ) } ) ∈ ( SubMnd ‘ 𝐺 ) ) |
28 |
25 26 27
|
syl2anc |
⊢ ( 𝜑 → ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ { ( 𝐹 ‘ 𝑋 ) } ) ∈ ( SubMnd ‘ 𝐺 ) ) |
29 |
20 11
|
submcmn2 |
⊢ ( ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ { ( 𝐹 ‘ 𝑋 ) } ) ∈ ( SubMnd ‘ 𝐺 ) → ( ( 𝐺 ↾s ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ { ( 𝐹 ‘ 𝑋 ) } ) ) ∈ CMnd ↔ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ { ( 𝐹 ‘ 𝑋 ) } ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ { ( 𝐹 ‘ 𝑋 ) } ) ) ) ) |
30 |
28 29
|
syl |
⊢ ( 𝜑 → ( ( 𝐺 ↾s ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ { ( 𝐹 ‘ 𝑋 ) } ) ) ∈ CMnd ↔ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ { ( 𝐹 ‘ 𝑋 ) } ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ { ( 𝐹 ‘ 𝑋 ) } ) ) ) ) |
31 |
22 30
|
mpbid |
⊢ ( 𝜑 → ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ { ( 𝐹 ‘ 𝑋 ) } ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ { ( 𝐹 ‘ 𝑋 ) } ) ) ) |
32 |
6
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn 𝐴 ) |
33 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑎 = 𝑋 ) → 𝑎 = 𝑋 ) |
34 |
33
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑎 = 𝑋 ) → ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑋 ) ) |
35 |
25 19 26
|
mrcssidd |
⊢ ( 𝜑 → { ( 𝐹 ‘ 𝑋 ) } ⊆ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ { ( 𝐹 ‘ 𝑋 ) } ) ) |
36 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑋 ) ∈ V |
37 |
36
|
snss |
⊢ ( ( 𝐹 ‘ 𝑋 ) ∈ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ { ( 𝐹 ‘ 𝑋 ) } ) ↔ { ( 𝐹 ‘ 𝑋 ) } ⊆ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ { ( 𝐹 ‘ 𝑋 ) } ) ) |
38 |
35 37
|
sylibr |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑋 ) ∈ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ { ( 𝐹 ‘ 𝑋 ) } ) ) |
39 |
38
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑎 = 𝑋 ) → ( 𝐹 ‘ 𝑋 ) ∈ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ { ( 𝐹 ‘ 𝑋 ) } ) ) |
40 |
34 39
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑎 = 𝑋 ) → ( 𝐹 ‘ 𝑎 ) ∈ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ { ( 𝐹 ‘ 𝑋 ) } ) ) |
41 |
|
eldifsn |
⊢ ( 𝑎 ∈ ( 𝐴 ∖ { 𝑋 } ) ↔ ( 𝑎 ∈ 𝐴 ∧ 𝑎 ≠ 𝑋 ) ) |
42 |
2
|
fvexi |
⊢ 0 ∈ V |
43 |
42
|
a1i |
⊢ ( 𝜑 → 0 ∈ V ) |
44 |
6 7 4 43
|
suppssr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝐴 ∖ { 𝑋 } ) ) → ( 𝐹 ‘ 𝑎 ) = 0 ) |
45 |
41 44
|
sylan2br |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑎 ≠ 𝑋 ) ) → ( 𝐹 ‘ 𝑎 ) = 0 ) |
46 |
2
|
subm0cl |
⊢ ( ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ { ( 𝐹 ‘ 𝑋 ) } ) ∈ ( SubMnd ‘ 𝐺 ) → 0 ∈ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ { ( 𝐹 ‘ 𝑋 ) } ) ) |
47 |
28 46
|
syl |
⊢ ( 𝜑 → 0 ∈ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ { ( 𝐹 ‘ 𝑋 ) } ) ) |
48 |
47
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑎 ≠ 𝑋 ) ) → 0 ∈ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ { ( 𝐹 ‘ 𝑋 ) } ) ) |
49 |
45 48
|
eqeltrd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑎 ≠ 𝑋 ) ) → ( 𝐹 ‘ 𝑎 ) ∈ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ { ( 𝐹 ‘ 𝑋 ) } ) ) |
50 |
49
|
anassrs |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑎 ≠ 𝑋 ) → ( 𝐹 ‘ 𝑎 ) ∈ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ { ( 𝐹 ‘ 𝑋 ) } ) ) |
51 |
40 50
|
pm2.61dane |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑎 ) ∈ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ { ( 𝐹 ‘ 𝑋 ) } ) ) |
52 |
51
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) ∈ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ { ( 𝐹 ‘ 𝑋 ) } ) ) |
53 |
|
ffnfv |
⊢ ( 𝐹 : 𝐴 ⟶ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ { ( 𝐹 ‘ 𝑋 ) } ) ↔ ( 𝐹 Fn 𝐴 ∧ ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) ∈ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ { ( 𝐹 ‘ 𝑋 ) } ) ) ) |
54 |
32 52 53
|
sylanbrc |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ { ( 𝐹 ‘ 𝑋 ) } ) ) |
55 |
54
|
frnd |
⊢ ( 𝜑 → ran 𝐹 ⊆ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ { ( 𝐹 ‘ 𝑋 ) } ) ) |
56 |
11
|
cntzidss |
⊢ ( ( ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ { ( 𝐹 ‘ 𝑋 ) } ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ { ( 𝐹 ‘ 𝑋 ) } ) ) ∧ ran 𝐹 ⊆ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ { ( 𝐹 ‘ 𝑋 ) } ) ) → ran 𝐹 ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ran 𝐹 ) ) |
57 |
31 55 56
|
syl2anc |
⊢ ( 𝜑 → ran 𝐹 ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ran 𝐹 ) ) |
58 |
6
|
ffund |
⊢ ( 𝜑 → Fun 𝐹 ) |
59 |
|
snfi |
⊢ { 𝑋 } ∈ Fin |
60 |
|
ssfi |
⊢ ( ( { 𝑋 } ∈ Fin ∧ ( 𝐹 supp 0 ) ⊆ { 𝑋 } ) → ( 𝐹 supp 0 ) ∈ Fin ) |
61 |
59 7 60
|
sylancr |
⊢ ( 𝜑 → ( 𝐹 supp 0 ) ∈ Fin ) |
62 |
6 4
|
fexd |
⊢ ( 𝜑 → 𝐹 ∈ V ) |
63 |
|
isfsupp |
⊢ ( ( 𝐹 ∈ V ∧ 0 ∈ V ) → ( 𝐹 finSupp 0 ↔ ( Fun 𝐹 ∧ ( 𝐹 supp 0 ) ∈ Fin ) ) ) |
64 |
62 43 63
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 finSupp 0 ↔ ( Fun 𝐹 ∧ ( 𝐹 supp 0 ) ∈ Fin ) ) ) |
65 |
58 61 64
|
mpbir2and |
⊢ ( 𝜑 → 𝐹 finSupp 0 ) |
66 |
1 2 11 3 4 6 57 7 65
|
gsumzres |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝐹 ↾ { 𝑋 } ) ) = ( 𝐺 Σg 𝐹 ) ) |
67 |
|
fveq2 |
⊢ ( 𝑎 = 𝑋 → ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑋 ) ) |
68 |
1 67
|
gsumsn |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑋 ) ∈ 𝐵 ) → ( 𝐺 Σg ( 𝑎 ∈ { 𝑋 } ↦ ( 𝐹 ‘ 𝑎 ) ) ) = ( 𝐹 ‘ 𝑋 ) ) |
69 |
3 5 12 68
|
syl3anc |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑎 ∈ { 𝑋 } ↦ ( 𝐹 ‘ 𝑎 ) ) ) = ( 𝐹 ‘ 𝑋 ) ) |
70 |
10 66 69
|
3eqtr3d |
⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) = ( 𝐹 ‘ 𝑋 ) ) |