| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gsumress.b | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | gsumress.o | ⊢  +   =  ( +g ‘ 𝐺 ) | 
						
							| 3 |  | gsumress.h | ⊢ 𝐻  =  ( 𝐺  ↾s  𝑆 ) | 
						
							| 4 |  | gsumress.g | ⊢ ( 𝜑  →  𝐺  ∈  𝑉 ) | 
						
							| 5 |  | gsumress.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑋 ) | 
						
							| 6 |  | gsumress.s | ⊢ ( 𝜑  →  𝑆  ⊆  𝐵 ) | 
						
							| 7 |  | gsumress.f | ⊢ ( 𝜑  →  𝐹 : 𝐴 ⟶ 𝑆 ) | 
						
							| 8 |  | gsumress.z | ⊢ ( 𝜑  →   0   ∈  𝑆 ) | 
						
							| 9 |  | gsumress.c | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  ( (  0   +  𝑥 )  =  𝑥  ∧  ( 𝑥  +   0  )  =  𝑥 ) ) | 
						
							| 10 |  | oveq1 | ⊢ ( 𝑦  =   0   →  ( 𝑦  +  𝑥 )  =  (  0   +  𝑥 ) ) | 
						
							| 11 | 10 | eqeq1d | ⊢ ( 𝑦  =   0   →  ( ( 𝑦  +  𝑥 )  =  𝑥  ↔  (  0   +  𝑥 )  =  𝑥 ) ) | 
						
							| 12 | 11 | ovanraleqv | ⊢ ( 𝑦  =   0   →  ( ∀ 𝑥  ∈  𝐵 ( ( 𝑦  +  𝑥 )  =  𝑥  ∧  ( 𝑥  +  𝑦 )  =  𝑥 )  ↔  ∀ 𝑥  ∈  𝐵 ( (  0   +  𝑥 )  =  𝑥  ∧  ( 𝑥  +   0  )  =  𝑥 ) ) ) | 
						
							| 13 | 6 8 | sseldd | ⊢ ( 𝜑  →   0   ∈  𝐵 ) | 
						
							| 14 | 9 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝐵 ( (  0   +  𝑥 )  =  𝑥  ∧  ( 𝑥  +   0  )  =  𝑥 ) ) | 
						
							| 15 | 12 13 14 | elrabd | ⊢ ( 𝜑  →   0   ∈  { 𝑦  ∈  𝐵  ∣  ∀ 𝑥  ∈  𝐵 ( ( 𝑦  +  𝑥 )  =  𝑥  ∧  ( 𝑥  +  𝑦 )  =  𝑥 ) } ) | 
						
							| 16 | 15 | snssd | ⊢ ( 𝜑  →  {  0  }  ⊆  { 𝑦  ∈  𝐵  ∣  ∀ 𝑥  ∈  𝐵 ( ( 𝑦  +  𝑥 )  =  𝑥  ∧  ( 𝑥  +  𝑦 )  =  𝑥 ) } ) | 
						
							| 17 |  | eqid | ⊢ ( 0g ‘ 𝐺 )  =  ( 0g ‘ 𝐺 ) | 
						
							| 18 |  | eqid | ⊢ { 𝑦  ∈  𝐵  ∣  ∀ 𝑥  ∈  𝐵 ( ( 𝑦  +  𝑥 )  =  𝑥  ∧  ( 𝑥  +  𝑦 )  =  𝑥 ) }  =  { 𝑦  ∈  𝐵  ∣  ∀ 𝑥  ∈  𝐵 ( ( 𝑦  +  𝑥 )  =  𝑥  ∧  ( 𝑥  +  𝑦 )  =  𝑥 ) } | 
						
							| 19 | 1 17 2 18 | mgmidsssn0 | ⊢ ( 𝐺  ∈  𝑉  →  { 𝑦  ∈  𝐵  ∣  ∀ 𝑥  ∈  𝐵 ( ( 𝑦  +  𝑥 )  =  𝑥  ∧  ( 𝑥  +  𝑦 )  =  𝑥 ) }  ⊆  { ( 0g ‘ 𝐺 ) } ) | 
						
							| 20 | 4 19 | syl | ⊢ ( 𝜑  →  { 𝑦  ∈  𝐵  ∣  ∀ 𝑥  ∈  𝐵 ( ( 𝑦  +  𝑥 )  =  𝑥  ∧  ( 𝑥  +  𝑦 )  =  𝑥 ) }  ⊆  { ( 0g ‘ 𝐺 ) } ) | 
						
							| 21 | 20 15 | sseldd | ⊢ ( 𝜑  →   0   ∈  { ( 0g ‘ 𝐺 ) } ) | 
						
							| 22 |  | elsni | ⊢ (  0   ∈  { ( 0g ‘ 𝐺 ) }  →   0   =  ( 0g ‘ 𝐺 ) ) | 
						
							| 23 | 21 22 | syl | ⊢ ( 𝜑  →   0   =  ( 0g ‘ 𝐺 ) ) | 
						
							| 24 | 23 | sneqd | ⊢ ( 𝜑  →  {  0  }  =  { ( 0g ‘ 𝐺 ) } ) | 
						
							| 25 | 20 24 | sseqtrrd | ⊢ ( 𝜑  →  { 𝑦  ∈  𝐵  ∣  ∀ 𝑥  ∈  𝐵 ( ( 𝑦  +  𝑥 )  =  𝑥  ∧  ( 𝑥  +  𝑦 )  =  𝑥 ) }  ⊆  {  0  } ) | 
						
							| 26 | 16 25 | eqssd | ⊢ ( 𝜑  →  {  0  }  =  { 𝑦  ∈  𝐵  ∣  ∀ 𝑥  ∈  𝐵 ( ( 𝑦  +  𝑥 )  =  𝑥  ∧  ( 𝑥  +  𝑦 )  =  𝑥 ) } ) | 
						
							| 27 | 11 | ovanraleqv | ⊢ ( 𝑦  =   0   →  ( ∀ 𝑥  ∈  𝑆 ( ( 𝑦  +  𝑥 )  =  𝑥  ∧  ( 𝑥  +  𝑦 )  =  𝑥 )  ↔  ∀ 𝑥  ∈  𝑆 ( (  0   +  𝑥 )  =  𝑥  ∧  ( 𝑥  +   0  )  =  𝑥 ) ) ) | 
						
							| 28 | 6 | sselda | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑆 )  →  𝑥  ∈  𝐵 ) | 
						
							| 29 | 28 9 | syldan | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑆 )  →  ( (  0   +  𝑥 )  =  𝑥  ∧  ( 𝑥  +   0  )  =  𝑥 ) ) | 
						
							| 30 | 29 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝑆 ( (  0   +  𝑥 )  =  𝑥  ∧  ( 𝑥  +   0  )  =  𝑥 ) ) | 
						
							| 31 | 27 8 30 | elrabd | ⊢ ( 𝜑  →   0   ∈  { 𝑦  ∈  𝑆  ∣  ∀ 𝑥  ∈  𝑆 ( ( 𝑦  +  𝑥 )  =  𝑥  ∧  ( 𝑥  +  𝑦 )  =  𝑥 ) } ) | 
						
							| 32 | 3 1 | ressbas2 | ⊢ ( 𝑆  ⊆  𝐵  →  𝑆  =  ( Base ‘ 𝐻 ) ) | 
						
							| 33 | 6 32 | syl | ⊢ ( 𝜑  →  𝑆  =  ( Base ‘ 𝐻 ) ) | 
						
							| 34 |  | fvex | ⊢ ( Base ‘ 𝐻 )  ∈  V | 
						
							| 35 | 33 34 | eqeltrdi | ⊢ ( 𝜑  →  𝑆  ∈  V ) | 
						
							| 36 | 3 2 | ressplusg | ⊢ ( 𝑆  ∈  V  →   +   =  ( +g ‘ 𝐻 ) ) | 
						
							| 37 | 35 36 | syl | ⊢ ( 𝜑  →   +   =  ( +g ‘ 𝐻 ) ) | 
						
							| 38 | 37 | oveqd | ⊢ ( 𝜑  →  ( 𝑦  +  𝑥 )  =  ( 𝑦 ( +g ‘ 𝐻 ) 𝑥 ) ) | 
						
							| 39 | 38 | eqeq1d | ⊢ ( 𝜑  →  ( ( 𝑦  +  𝑥 )  =  𝑥  ↔  ( 𝑦 ( +g ‘ 𝐻 ) 𝑥 )  =  𝑥 ) ) | 
						
							| 40 | 37 | oveqd | ⊢ ( 𝜑  →  ( 𝑥  +  𝑦 )  =  ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) ) | 
						
							| 41 | 40 | eqeq1d | ⊢ ( 𝜑  →  ( ( 𝑥  +  𝑦 )  =  𝑥  ↔  ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 )  =  𝑥 ) ) | 
						
							| 42 | 39 41 | anbi12d | ⊢ ( 𝜑  →  ( ( ( 𝑦  +  𝑥 )  =  𝑥  ∧  ( 𝑥  +  𝑦 )  =  𝑥 )  ↔  ( ( 𝑦 ( +g ‘ 𝐻 ) 𝑥 )  =  𝑥  ∧  ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 )  =  𝑥 ) ) ) | 
						
							| 43 | 33 42 | raleqbidv | ⊢ ( 𝜑  →  ( ∀ 𝑥  ∈  𝑆 ( ( 𝑦  +  𝑥 )  =  𝑥  ∧  ( 𝑥  +  𝑦 )  =  𝑥 )  ↔  ∀ 𝑥  ∈  ( Base ‘ 𝐻 ) ( ( 𝑦 ( +g ‘ 𝐻 ) 𝑥 )  =  𝑥  ∧  ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 )  =  𝑥 ) ) ) | 
						
							| 44 | 33 43 | rabeqbidv | ⊢ ( 𝜑  →  { 𝑦  ∈  𝑆  ∣  ∀ 𝑥  ∈  𝑆 ( ( 𝑦  +  𝑥 )  =  𝑥  ∧  ( 𝑥  +  𝑦 )  =  𝑥 ) }  =  { 𝑦  ∈  ( Base ‘ 𝐻 )  ∣  ∀ 𝑥  ∈  ( Base ‘ 𝐻 ) ( ( 𝑦 ( +g ‘ 𝐻 ) 𝑥 )  =  𝑥  ∧  ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 )  =  𝑥 ) } ) | 
						
							| 45 | 31 44 | eleqtrd | ⊢ ( 𝜑  →   0   ∈  { 𝑦  ∈  ( Base ‘ 𝐻 )  ∣  ∀ 𝑥  ∈  ( Base ‘ 𝐻 ) ( ( 𝑦 ( +g ‘ 𝐻 ) 𝑥 )  =  𝑥  ∧  ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 )  =  𝑥 ) } ) | 
						
							| 46 | 45 | snssd | ⊢ ( 𝜑  →  {  0  }  ⊆  { 𝑦  ∈  ( Base ‘ 𝐻 )  ∣  ∀ 𝑥  ∈  ( Base ‘ 𝐻 ) ( ( 𝑦 ( +g ‘ 𝐻 ) 𝑥 )  =  𝑥  ∧  ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 )  =  𝑥 ) } ) | 
						
							| 47 | 3 | ovexi | ⊢ 𝐻  ∈  V | 
						
							| 48 | 47 | a1i | ⊢ ( 𝜑  →  𝐻  ∈  V ) | 
						
							| 49 |  | eqid | ⊢ ( Base ‘ 𝐻 )  =  ( Base ‘ 𝐻 ) | 
						
							| 50 |  | eqid | ⊢ ( 0g ‘ 𝐻 )  =  ( 0g ‘ 𝐻 ) | 
						
							| 51 |  | eqid | ⊢ ( +g ‘ 𝐻 )  =  ( +g ‘ 𝐻 ) | 
						
							| 52 |  | eqid | ⊢ { 𝑦  ∈  ( Base ‘ 𝐻 )  ∣  ∀ 𝑥  ∈  ( Base ‘ 𝐻 ) ( ( 𝑦 ( +g ‘ 𝐻 ) 𝑥 )  =  𝑥  ∧  ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 )  =  𝑥 ) }  =  { 𝑦  ∈  ( Base ‘ 𝐻 )  ∣  ∀ 𝑥  ∈  ( Base ‘ 𝐻 ) ( ( 𝑦 ( +g ‘ 𝐻 ) 𝑥 )  =  𝑥  ∧  ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 )  =  𝑥 ) } | 
						
							| 53 | 49 50 51 52 | mgmidsssn0 | ⊢ ( 𝐻  ∈  V  →  { 𝑦  ∈  ( Base ‘ 𝐻 )  ∣  ∀ 𝑥  ∈  ( Base ‘ 𝐻 ) ( ( 𝑦 ( +g ‘ 𝐻 ) 𝑥 )  =  𝑥  ∧  ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 )  =  𝑥 ) }  ⊆  { ( 0g ‘ 𝐻 ) } ) | 
						
							| 54 | 48 53 | syl | ⊢ ( 𝜑  →  { 𝑦  ∈  ( Base ‘ 𝐻 )  ∣  ∀ 𝑥  ∈  ( Base ‘ 𝐻 ) ( ( 𝑦 ( +g ‘ 𝐻 ) 𝑥 )  =  𝑥  ∧  ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 )  =  𝑥 ) }  ⊆  { ( 0g ‘ 𝐻 ) } ) | 
						
							| 55 | 54 45 | sseldd | ⊢ ( 𝜑  →   0   ∈  { ( 0g ‘ 𝐻 ) } ) | 
						
							| 56 |  | elsni | ⊢ (  0   ∈  { ( 0g ‘ 𝐻 ) }  →   0   =  ( 0g ‘ 𝐻 ) ) | 
						
							| 57 | 55 56 | syl | ⊢ ( 𝜑  →   0   =  ( 0g ‘ 𝐻 ) ) | 
						
							| 58 | 57 | sneqd | ⊢ ( 𝜑  →  {  0  }  =  { ( 0g ‘ 𝐻 ) } ) | 
						
							| 59 | 54 58 | sseqtrrd | ⊢ ( 𝜑  →  { 𝑦  ∈  ( Base ‘ 𝐻 )  ∣  ∀ 𝑥  ∈  ( Base ‘ 𝐻 ) ( ( 𝑦 ( +g ‘ 𝐻 ) 𝑥 )  =  𝑥  ∧  ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 )  =  𝑥 ) }  ⊆  {  0  } ) | 
						
							| 60 | 46 59 | eqssd | ⊢ ( 𝜑  →  {  0  }  =  { 𝑦  ∈  ( Base ‘ 𝐻 )  ∣  ∀ 𝑥  ∈  ( Base ‘ 𝐻 ) ( ( 𝑦 ( +g ‘ 𝐻 ) 𝑥 )  =  𝑥  ∧  ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 )  =  𝑥 ) } ) | 
						
							| 61 | 26 60 | eqtr3d | ⊢ ( 𝜑  →  { 𝑦  ∈  𝐵  ∣  ∀ 𝑥  ∈  𝐵 ( ( 𝑦  +  𝑥 )  =  𝑥  ∧  ( 𝑥  +  𝑦 )  =  𝑥 ) }  =  { 𝑦  ∈  ( Base ‘ 𝐻 )  ∣  ∀ 𝑥  ∈  ( Base ‘ 𝐻 ) ( ( 𝑦 ( +g ‘ 𝐻 ) 𝑥 )  =  𝑥  ∧  ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 )  =  𝑥 ) } ) | 
						
							| 62 | 61 | sseq2d | ⊢ ( 𝜑  →  ( ran  𝐹  ⊆  { 𝑦  ∈  𝐵  ∣  ∀ 𝑥  ∈  𝐵 ( ( 𝑦  +  𝑥 )  =  𝑥  ∧  ( 𝑥  +  𝑦 )  =  𝑥 ) }  ↔  ran  𝐹  ⊆  { 𝑦  ∈  ( Base ‘ 𝐻 )  ∣  ∀ 𝑥  ∈  ( Base ‘ 𝐻 ) ( ( 𝑦 ( +g ‘ 𝐻 ) 𝑥 )  =  𝑥  ∧  ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 )  =  𝑥 ) } ) ) | 
						
							| 63 | 23 57 | eqtr3d | ⊢ ( 𝜑  →  ( 0g ‘ 𝐺 )  =  ( 0g ‘ 𝐻 ) ) | 
						
							| 64 | 37 | seqeq2d | ⊢ ( 𝜑  →  seq 𝑚 (  +  ,  𝐹 )  =  seq 𝑚 ( ( +g ‘ 𝐻 ) ,  𝐹 ) ) | 
						
							| 65 | 64 | fveq1d | ⊢ ( 𝜑  →  ( seq 𝑚 (  +  ,  𝐹 ) ‘ 𝑛 )  =  ( seq 𝑚 ( ( +g ‘ 𝐻 ) ,  𝐹 ) ‘ 𝑛 ) ) | 
						
							| 66 | 65 | eqeq2d | ⊢ ( 𝜑  →  ( 𝑧  =  ( seq 𝑚 (  +  ,  𝐹 ) ‘ 𝑛 )  ↔  𝑧  =  ( seq 𝑚 ( ( +g ‘ 𝐻 ) ,  𝐹 ) ‘ 𝑛 ) ) ) | 
						
							| 67 | 66 | anbi2d | ⊢ ( 𝜑  →  ( ( 𝐴  =  ( 𝑚 ... 𝑛 )  ∧  𝑧  =  ( seq 𝑚 (  +  ,  𝐹 ) ‘ 𝑛 ) )  ↔  ( 𝐴  =  ( 𝑚 ... 𝑛 )  ∧  𝑧  =  ( seq 𝑚 ( ( +g ‘ 𝐻 ) ,  𝐹 ) ‘ 𝑛 ) ) ) ) | 
						
							| 68 | 67 | rexbidv | ⊢ ( 𝜑  →  ( ∃ 𝑛  ∈  ( ℤ≥ ‘ 𝑚 ) ( 𝐴  =  ( 𝑚 ... 𝑛 )  ∧  𝑧  =  ( seq 𝑚 (  +  ,  𝐹 ) ‘ 𝑛 ) )  ↔  ∃ 𝑛  ∈  ( ℤ≥ ‘ 𝑚 ) ( 𝐴  =  ( 𝑚 ... 𝑛 )  ∧  𝑧  =  ( seq 𝑚 ( ( +g ‘ 𝐻 ) ,  𝐹 ) ‘ 𝑛 ) ) ) ) | 
						
							| 69 | 68 | exbidv | ⊢ ( 𝜑  →  ( ∃ 𝑚 ∃ 𝑛  ∈  ( ℤ≥ ‘ 𝑚 ) ( 𝐴  =  ( 𝑚 ... 𝑛 )  ∧  𝑧  =  ( seq 𝑚 (  +  ,  𝐹 ) ‘ 𝑛 ) )  ↔  ∃ 𝑚 ∃ 𝑛  ∈  ( ℤ≥ ‘ 𝑚 ) ( 𝐴  =  ( 𝑚 ... 𝑛 )  ∧  𝑧  =  ( seq 𝑚 ( ( +g ‘ 𝐻 ) ,  𝐹 ) ‘ 𝑛 ) ) ) ) | 
						
							| 70 | 69 | iotabidv | ⊢ ( 𝜑  →  ( ℩ 𝑧 ∃ 𝑚 ∃ 𝑛  ∈  ( ℤ≥ ‘ 𝑚 ) ( 𝐴  =  ( 𝑚 ... 𝑛 )  ∧  𝑧  =  ( seq 𝑚 (  +  ,  𝐹 ) ‘ 𝑛 ) ) )  =  ( ℩ 𝑧 ∃ 𝑚 ∃ 𝑛  ∈  ( ℤ≥ ‘ 𝑚 ) ( 𝐴  =  ( 𝑚 ... 𝑛 )  ∧  𝑧  =  ( seq 𝑚 ( ( +g ‘ 𝐻 ) ,  𝐹 ) ‘ 𝑛 ) ) ) ) | 
						
							| 71 | 37 | seqeq2d | ⊢ ( 𝜑  →  seq 1 (  +  ,  ( 𝐹  ∘  𝑓 ) )  =  seq 1 ( ( +g ‘ 𝐻 ) ,  ( 𝐹  ∘  𝑓 ) ) ) | 
						
							| 72 | 71 | fveq1d | ⊢ ( 𝜑  →  ( seq 1 (  +  ,  ( 𝐹  ∘  𝑓 ) ) ‘ ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) )  =  ( seq 1 ( ( +g ‘ 𝐻 ) ,  ( 𝐹  ∘  𝑓 ) ) ‘ ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) ) | 
						
							| 73 | 72 | eqeq2d | ⊢ ( 𝜑  →  ( 𝑧  =  ( seq 1 (  +  ,  ( 𝐹  ∘  𝑓 ) ) ‘ ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) )  ↔  𝑧  =  ( seq 1 ( ( +g ‘ 𝐻 ) ,  ( 𝐹  ∘  𝑓 ) ) ‘ ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) ) ) | 
						
							| 74 | 73 | anbi2d | ⊢ ( 𝜑  →  ( ( 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) –1-1-onto→ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) )  ∧  𝑧  =  ( seq 1 (  +  ,  ( 𝐹  ∘  𝑓 ) ) ‘ ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) )  ↔  ( 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) –1-1-onto→ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) )  ∧  𝑧  =  ( seq 1 ( ( +g ‘ 𝐻 ) ,  ( 𝐹  ∘  𝑓 ) ) ‘ ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) ) ) ) | 
						
							| 75 | 74 | exbidv | ⊢ ( 𝜑  →  ( ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) –1-1-onto→ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) )  ∧  𝑧  =  ( seq 1 (  +  ,  ( 𝐹  ∘  𝑓 ) ) ‘ ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) )  ↔  ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) –1-1-onto→ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) )  ∧  𝑧  =  ( seq 1 ( ( +g ‘ 𝐻 ) ,  ( 𝐹  ∘  𝑓 ) ) ‘ ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) ) ) ) | 
						
							| 76 | 75 | iotabidv | ⊢ ( 𝜑  →  ( ℩ 𝑧 ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) –1-1-onto→ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) )  ∧  𝑧  =  ( seq 1 (  +  ,  ( 𝐹  ∘  𝑓 ) ) ‘ ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) ) )  =  ( ℩ 𝑧 ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) –1-1-onto→ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) )  ∧  𝑧  =  ( seq 1 ( ( +g ‘ 𝐻 ) ,  ( 𝐹  ∘  𝑓 ) ) ‘ ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) ) ) ) | 
						
							| 77 | 70 76 | ifeq12d | ⊢ ( 𝜑  →  if ( 𝐴  ∈  ran  ... ,  ( ℩ 𝑧 ∃ 𝑚 ∃ 𝑛  ∈  ( ℤ≥ ‘ 𝑚 ) ( 𝐴  =  ( 𝑚 ... 𝑛 )  ∧  𝑧  =  ( seq 𝑚 (  +  ,  𝐹 ) ‘ 𝑛 ) ) ) ,  ( ℩ 𝑧 ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) –1-1-onto→ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) )  ∧  𝑧  =  ( seq 1 (  +  ,  ( 𝐹  ∘  𝑓 ) ) ‘ ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) ) ) )  =  if ( 𝐴  ∈  ran  ... ,  ( ℩ 𝑧 ∃ 𝑚 ∃ 𝑛  ∈  ( ℤ≥ ‘ 𝑚 ) ( 𝐴  =  ( 𝑚 ... 𝑛 )  ∧  𝑧  =  ( seq 𝑚 ( ( +g ‘ 𝐻 ) ,  𝐹 ) ‘ 𝑛 ) ) ) ,  ( ℩ 𝑧 ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) –1-1-onto→ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) )  ∧  𝑧  =  ( seq 1 ( ( +g ‘ 𝐻 ) ,  ( 𝐹  ∘  𝑓 ) ) ‘ ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) ) ) ) ) | 
						
							| 78 | 62 63 77 | ifbieq12d | ⊢ ( 𝜑  →  if ( ran  𝐹  ⊆  { 𝑦  ∈  𝐵  ∣  ∀ 𝑥  ∈  𝐵 ( ( 𝑦  +  𝑥 )  =  𝑥  ∧  ( 𝑥  +  𝑦 )  =  𝑥 ) } ,  ( 0g ‘ 𝐺 ) ,  if ( 𝐴  ∈  ran  ... ,  ( ℩ 𝑧 ∃ 𝑚 ∃ 𝑛  ∈  ( ℤ≥ ‘ 𝑚 ) ( 𝐴  =  ( 𝑚 ... 𝑛 )  ∧  𝑧  =  ( seq 𝑚 (  +  ,  𝐹 ) ‘ 𝑛 ) ) ) ,  ( ℩ 𝑧 ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) –1-1-onto→ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) )  ∧  𝑧  =  ( seq 1 (  +  ,  ( 𝐹  ∘  𝑓 ) ) ‘ ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) ) ) ) )  =  if ( ran  𝐹  ⊆  { 𝑦  ∈  ( Base ‘ 𝐻 )  ∣  ∀ 𝑥  ∈  ( Base ‘ 𝐻 ) ( ( 𝑦 ( +g ‘ 𝐻 ) 𝑥 )  =  𝑥  ∧  ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 )  =  𝑥 ) } ,  ( 0g ‘ 𝐻 ) ,  if ( 𝐴  ∈  ran  ... ,  ( ℩ 𝑧 ∃ 𝑚 ∃ 𝑛  ∈  ( ℤ≥ ‘ 𝑚 ) ( 𝐴  =  ( 𝑚 ... 𝑛 )  ∧  𝑧  =  ( seq 𝑚 ( ( +g ‘ 𝐻 ) ,  𝐹 ) ‘ 𝑛 ) ) ) ,  ( ℩ 𝑧 ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) –1-1-onto→ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) )  ∧  𝑧  =  ( seq 1 ( ( +g ‘ 𝐻 ) ,  ( 𝐹  ∘  𝑓 ) ) ‘ ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) ) ) ) ) ) | 
						
							| 79 | 26 | difeq2d | ⊢ ( 𝜑  →  ( V  ∖  {  0  } )  =  ( V  ∖  { 𝑦  ∈  𝐵  ∣  ∀ 𝑥  ∈  𝐵 ( ( 𝑦  +  𝑥 )  =  𝑥  ∧  ( 𝑥  +  𝑦 )  =  𝑥 ) } ) ) | 
						
							| 80 | 79 | imaeq2d | ⊢ ( 𝜑  →  ( ◡ 𝐹  “  ( V  ∖  {  0  } ) )  =  ( ◡ 𝐹  “  ( V  ∖  { 𝑦  ∈  𝐵  ∣  ∀ 𝑥  ∈  𝐵 ( ( 𝑦  +  𝑥 )  =  𝑥  ∧  ( 𝑥  +  𝑦 )  =  𝑥 ) } ) ) ) | 
						
							| 81 | 7 6 | fssd | ⊢ ( 𝜑  →  𝐹 : 𝐴 ⟶ 𝐵 ) | 
						
							| 82 | 1 17 2 18 80 4 5 81 | gsumval | ⊢ ( 𝜑  →  ( 𝐺  Σg  𝐹 )  =  if ( ran  𝐹  ⊆  { 𝑦  ∈  𝐵  ∣  ∀ 𝑥  ∈  𝐵 ( ( 𝑦  +  𝑥 )  =  𝑥  ∧  ( 𝑥  +  𝑦 )  =  𝑥 ) } ,  ( 0g ‘ 𝐺 ) ,  if ( 𝐴  ∈  ran  ... ,  ( ℩ 𝑧 ∃ 𝑚 ∃ 𝑛  ∈  ( ℤ≥ ‘ 𝑚 ) ( 𝐴  =  ( 𝑚 ... 𝑛 )  ∧  𝑧  =  ( seq 𝑚 (  +  ,  𝐹 ) ‘ 𝑛 ) ) ) ,  ( ℩ 𝑧 ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) –1-1-onto→ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) )  ∧  𝑧  =  ( seq 1 (  +  ,  ( 𝐹  ∘  𝑓 ) ) ‘ ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) ) ) ) ) ) | 
						
							| 83 | 60 | difeq2d | ⊢ ( 𝜑  →  ( V  ∖  {  0  } )  =  ( V  ∖  { 𝑦  ∈  ( Base ‘ 𝐻 )  ∣  ∀ 𝑥  ∈  ( Base ‘ 𝐻 ) ( ( 𝑦 ( +g ‘ 𝐻 ) 𝑥 )  =  𝑥  ∧  ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 )  =  𝑥 ) } ) ) | 
						
							| 84 | 83 | imaeq2d | ⊢ ( 𝜑  →  ( ◡ 𝐹  “  ( V  ∖  {  0  } ) )  =  ( ◡ 𝐹  “  ( V  ∖  { 𝑦  ∈  ( Base ‘ 𝐻 )  ∣  ∀ 𝑥  ∈  ( Base ‘ 𝐻 ) ( ( 𝑦 ( +g ‘ 𝐻 ) 𝑥 )  =  𝑥  ∧  ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 )  =  𝑥 ) } ) ) ) | 
						
							| 85 | 33 | feq3d | ⊢ ( 𝜑  →  ( 𝐹 : 𝐴 ⟶ 𝑆  ↔  𝐹 : 𝐴 ⟶ ( Base ‘ 𝐻 ) ) ) | 
						
							| 86 | 7 85 | mpbid | ⊢ ( 𝜑  →  𝐹 : 𝐴 ⟶ ( Base ‘ 𝐻 ) ) | 
						
							| 87 | 49 50 51 52 84 48 5 86 | gsumval | ⊢ ( 𝜑  →  ( 𝐻  Σg  𝐹 )  =  if ( ran  𝐹  ⊆  { 𝑦  ∈  ( Base ‘ 𝐻 )  ∣  ∀ 𝑥  ∈  ( Base ‘ 𝐻 ) ( ( 𝑦 ( +g ‘ 𝐻 ) 𝑥 )  =  𝑥  ∧  ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 )  =  𝑥 ) } ,  ( 0g ‘ 𝐻 ) ,  if ( 𝐴  ∈  ran  ... ,  ( ℩ 𝑧 ∃ 𝑚 ∃ 𝑛  ∈  ( ℤ≥ ‘ 𝑚 ) ( 𝐴  =  ( 𝑚 ... 𝑛 )  ∧  𝑧  =  ( seq 𝑚 ( ( +g ‘ 𝐻 ) ,  𝐹 ) ‘ 𝑛 ) ) ) ,  ( ℩ 𝑧 ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) –1-1-onto→ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) )  ∧  𝑧  =  ( seq 1 ( ( +g ‘ 𝐻 ) ,  ( 𝐹  ∘  𝑓 ) ) ‘ ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) ) ) ) ) ) | 
						
							| 88 | 78 82 87 | 3eqtr4d | ⊢ ( 𝜑  →  ( 𝐺  Σg  𝐹 )  =  ( 𝐻  Σg  𝐹 ) ) |