Step |
Hyp |
Ref |
Expression |
1 |
|
gsummonply1.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
2 |
|
gsummonply1.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
3 |
|
gsummonply1.x |
⊢ 𝑋 = ( var1 ‘ 𝑅 ) |
4 |
|
gsummonply1.e |
⊢ ↑ = ( .g ‘ ( mulGrp ‘ 𝑃 ) ) |
5 |
|
gsummonply1.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
6 |
|
gsummonply1.k |
⊢ 𝐾 = ( Base ‘ 𝑅 ) |
7 |
|
gsummonply1.m |
⊢ ∗ = ( ·𝑠 ‘ 𝑃 ) |
8 |
|
gsummonply1.0 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
9 |
|
gsummonply1.a |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ℕ0 𝐴 ∈ 𝐾 ) |
10 |
|
gsummonply1.f |
⊢ ( 𝜑 → ( 𝑘 ∈ ℕ0 ↦ 𝐴 ) finSupp 0 ) |
11 |
|
eqid |
⊢ ( 0g ‘ 𝑃 ) = ( 0g ‘ 𝑃 ) |
12 |
1
|
ply1ring |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ Ring ) |
13 |
|
ringcmn |
⊢ ( 𝑃 ∈ Ring → 𝑃 ∈ CMnd ) |
14 |
5 12 13
|
3syl |
⊢ ( 𝜑 → 𝑃 ∈ CMnd ) |
15 |
|
nn0ex |
⊢ ℕ0 ∈ V |
16 |
15
|
a1i |
⊢ ( 𝜑 → ℕ0 ∈ V ) |
17 |
9
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝐴 ∈ 𝐾 ) |
18 |
5
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ∧ 𝐴 ∈ 𝐾 ) → 𝑅 ∈ Ring ) |
19 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ∧ 𝐴 ∈ 𝐾 ) → 𝐴 ∈ 𝐾 ) |
20 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ∧ 𝐴 ∈ 𝐾 ) → 𝑘 ∈ ℕ0 ) |
21 |
|
eqid |
⊢ ( mulGrp ‘ 𝑃 ) = ( mulGrp ‘ 𝑃 ) |
22 |
6 1 3 7 21 4 2
|
ply1tmcl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐴 ∈ 𝐾 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ∗ ( 𝑘 ↑ 𝑋 ) ) ∈ 𝐵 ) |
23 |
18 19 20 22
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ∧ 𝐴 ∈ 𝐾 ) → ( 𝐴 ∗ ( 𝑘 ↑ 𝑋 ) ) ∈ 𝐵 ) |
24 |
17 23
|
mpd3an3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ∗ ( 𝑘 ↑ 𝑋 ) ) ∈ 𝐵 ) |
25 |
24
|
fmpttd |
⊢ ( 𝜑 → ( 𝑘 ∈ ℕ0 ↦ ( 𝐴 ∗ ( 𝑘 ↑ 𝑋 ) ) ) : ℕ0 ⟶ 𝐵 ) |
26 |
1
|
ply1lmod |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ LMod ) |
27 |
5 26
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ LMod ) |
28 |
1
|
ply1sca |
⊢ ( 𝑅 ∈ Ring → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
29 |
5 28
|
syl |
⊢ ( 𝜑 → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
30 |
1 3 21 4 2
|
ply1moncl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑘 ∈ ℕ0 ) → ( 𝑘 ↑ 𝑋 ) ∈ 𝐵 ) |
31 |
5 30
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑘 ↑ 𝑋 ) ∈ 𝐵 ) |
32 |
16 27 29 2 17 31 11 8 7 10
|
mptscmfsupp0 |
⊢ ( 𝜑 → ( 𝑘 ∈ ℕ0 ↦ ( 𝐴 ∗ ( 𝑘 ↑ 𝑋 ) ) ) finSupp ( 0g ‘ 𝑃 ) ) |
33 |
2 11 14 16 25 32
|
gsumcl |
⊢ ( 𝜑 → ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( 𝐴 ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) ∈ 𝐵 ) |