Metamath Proof Explorer


Theorem gsumsn

Description: Group sum of a singleton. (Contributed by Mario Carneiro, 19-Dec-2014) (Revised by Mario Carneiro, 24-Apr-2016) (Proof shortened by AV, 11-Dec-2019)

Ref Expression
Hypotheses gsumsn.b 𝐵 = ( Base ‘ 𝐺 )
gsumsn.s ( 𝑘 = 𝑀𝐴 = 𝐶 )
Assertion gsumsn ( ( 𝐺 ∈ Mnd ∧ 𝑀𝑉𝐶𝐵 ) → ( 𝐺 Σg ( 𝑘 ∈ { 𝑀 } ↦ 𝐴 ) ) = 𝐶 )

Proof

Step Hyp Ref Expression
1 gsumsn.b 𝐵 = ( Base ‘ 𝐺 )
2 gsumsn.s ( 𝑘 = 𝑀𝐴 = 𝐶 )
3 nfcv 𝑘 𝐶
4 3 1 2 gsumsnf ( ( 𝐺 ∈ Mnd ∧ 𝑀𝑉𝐶𝐵 ) → ( 𝐺 Σg ( 𝑘 ∈ { 𝑀 } ↦ 𝐴 ) ) = 𝐶 )