Database
BASIC ALGEBRAIC STRUCTURES
Groups
Abelian groups
Group sum operation
gsumsnf
Metamath Proof Explorer
Description: Group sum of a singleton, using bound-variable hypotheses instead of
distinct variable conditions. (Contributed by Mario Carneiro , 19-Dec-2014) (Revised by Thierry Arnoux , 28-Mar-2018) (Proof
shortened by AV , 11-Dec-2019)
Ref
Expression
Hypotheses
gsumsnf.c
⊢ Ⅎ 𝑘 𝐶
gsumsnf.b
⊢ 𝐵 = ( Base ‘ 𝐺 )
gsumsnf.s
⊢ ( 𝑘 = 𝑀 → 𝐴 = 𝐶 )
Assertion
gsumsnf
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑀 ∈ 𝑉 ∧ 𝐶 ∈ 𝐵 ) → ( 𝐺 Σg ( 𝑘 ∈ { 𝑀 } ↦ 𝐴 ) ) = 𝐶 )
Proof
Step
Hyp
Ref
Expression
1
gsumsnf.c
⊢ Ⅎ 𝑘 𝐶
2
gsumsnf.b
⊢ 𝐵 = ( Base ‘ 𝐺 )
3
gsumsnf.s
⊢ ( 𝑘 = 𝑀 → 𝐴 = 𝐶 )
4
simp1
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑀 ∈ 𝑉 ∧ 𝐶 ∈ 𝐵 ) → 𝐺 ∈ Mnd )
5
simp2
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑀 ∈ 𝑉 ∧ 𝐶 ∈ 𝐵 ) → 𝑀 ∈ 𝑉 )
6
simp3
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑀 ∈ 𝑉 ∧ 𝐶 ∈ 𝐵 ) → 𝐶 ∈ 𝐵 )
7
3
adantl
⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝑀 ∈ 𝑉 ∧ 𝐶 ∈ 𝐵 ) ∧ 𝑘 = 𝑀 ) → 𝐴 = 𝐶 )
8
nfv
⊢ Ⅎ 𝑘 𝐺 ∈ Mnd
9
nfv
⊢ Ⅎ 𝑘 𝑀 ∈ 𝑉
10
1
nfel1
⊢ Ⅎ 𝑘 𝐶 ∈ 𝐵
11
8 9 10
nf3an
⊢ Ⅎ 𝑘 ( 𝐺 ∈ Mnd ∧ 𝑀 ∈ 𝑉 ∧ 𝐶 ∈ 𝐵 )
12
2 4 5 6 7 11 1
gsumsnfd
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑀 ∈ 𝑉 ∧ 𝐶 ∈ 𝐵 ) → ( 𝐺 Σg ( 𝑘 ∈ { 𝑀 } ↦ 𝐴 ) ) = 𝐶 )