Metamath Proof Explorer


Theorem gsumsnf

Description: Group sum of a singleton, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Mario Carneiro, 19-Dec-2014) (Revised by Thierry Arnoux, 28-Mar-2018) (Proof shortened by AV, 11-Dec-2019)

Ref Expression
Hypotheses gsumsnf.c 𝑘 𝐶
gsumsnf.b 𝐵 = ( Base ‘ 𝐺 )
gsumsnf.s ( 𝑘 = 𝑀𝐴 = 𝐶 )
Assertion gsumsnf ( ( 𝐺 ∈ Mnd ∧ 𝑀𝑉𝐶𝐵 ) → ( 𝐺 Σg ( 𝑘 ∈ { 𝑀 } ↦ 𝐴 ) ) = 𝐶 )

Proof

Step Hyp Ref Expression
1 gsumsnf.c 𝑘 𝐶
2 gsumsnf.b 𝐵 = ( Base ‘ 𝐺 )
3 gsumsnf.s ( 𝑘 = 𝑀𝐴 = 𝐶 )
4 simp1 ( ( 𝐺 ∈ Mnd ∧ 𝑀𝑉𝐶𝐵 ) → 𝐺 ∈ Mnd )
5 simp2 ( ( 𝐺 ∈ Mnd ∧ 𝑀𝑉𝐶𝐵 ) → 𝑀𝑉 )
6 simp3 ( ( 𝐺 ∈ Mnd ∧ 𝑀𝑉𝐶𝐵 ) → 𝐶𝐵 )
7 3 adantl ( ( ( 𝐺 ∈ Mnd ∧ 𝑀𝑉𝐶𝐵 ) ∧ 𝑘 = 𝑀 ) → 𝐴 = 𝐶 )
8 nfv 𝑘 𝐺 ∈ Mnd
9 nfv 𝑘 𝑀𝑉
10 1 nfel1 𝑘 𝐶𝐵
11 8 9 10 nf3an 𝑘 ( 𝐺 ∈ Mnd ∧ 𝑀𝑉𝐶𝐵 )
12 2 4 5 6 7 11 1 gsumsnfd ( ( 𝐺 ∈ Mnd ∧ 𝑀𝑉𝐶𝐵 ) → ( 𝐺 Σg ( 𝑘 ∈ { 𝑀 } ↦ 𝐴 ) ) = 𝐶 )