Step |
Hyp |
Ref |
Expression |
1 |
|
gsumsnd.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
gsumsnd.g |
⊢ ( 𝜑 → 𝐺 ∈ Mnd ) |
3 |
|
gsumsnd.m |
⊢ ( 𝜑 → 𝑀 ∈ 𝑉 ) |
4 |
|
gsumsnd.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝐵 ) |
5 |
|
gsumsnd.s |
⊢ ( ( 𝜑 ∧ 𝑘 = 𝑀 ) → 𝐴 = 𝐶 ) |
6 |
|
gsumsnfd.p |
⊢ Ⅎ 𝑘 𝜑 |
7 |
|
gsumsnfd.c |
⊢ Ⅎ 𝑘 𝐶 |
8 |
|
elsni |
⊢ ( 𝑘 ∈ { 𝑀 } → 𝑘 = 𝑀 ) |
9 |
8 5
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑀 } ) → 𝐴 = 𝐶 ) |
10 |
6 9
|
mpteq2da |
⊢ ( 𝜑 → ( 𝑘 ∈ { 𝑀 } ↦ 𝐴 ) = ( 𝑘 ∈ { 𝑀 } ↦ 𝐶 ) ) |
11 |
10
|
oveq2d |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ { 𝑀 } ↦ 𝐴 ) ) = ( 𝐺 Σg ( 𝑘 ∈ { 𝑀 } ↦ 𝐶 ) ) ) |
12 |
|
snfi |
⊢ { 𝑀 } ∈ Fin |
13 |
12
|
a1i |
⊢ ( 𝜑 → { 𝑀 } ∈ Fin ) |
14 |
|
eqid |
⊢ ( .g ‘ 𝐺 ) = ( .g ‘ 𝐺 ) |
15 |
7 1 14
|
gsumconstf |
⊢ ( ( 𝐺 ∈ Mnd ∧ { 𝑀 } ∈ Fin ∧ 𝐶 ∈ 𝐵 ) → ( 𝐺 Σg ( 𝑘 ∈ { 𝑀 } ↦ 𝐶 ) ) = ( ( ♯ ‘ { 𝑀 } ) ( .g ‘ 𝐺 ) 𝐶 ) ) |
16 |
2 13 4 15
|
syl3anc |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ { 𝑀 } ↦ 𝐶 ) ) = ( ( ♯ ‘ { 𝑀 } ) ( .g ‘ 𝐺 ) 𝐶 ) ) |
17 |
11 16
|
eqtrd |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ { 𝑀 } ↦ 𝐴 ) ) = ( ( ♯ ‘ { 𝑀 } ) ( .g ‘ 𝐺 ) 𝐶 ) ) |
18 |
|
hashsng |
⊢ ( 𝑀 ∈ 𝑉 → ( ♯ ‘ { 𝑀 } ) = 1 ) |
19 |
3 18
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ { 𝑀 } ) = 1 ) |
20 |
19
|
oveq1d |
⊢ ( 𝜑 → ( ( ♯ ‘ { 𝑀 } ) ( .g ‘ 𝐺 ) 𝐶 ) = ( 1 ( .g ‘ 𝐺 ) 𝐶 ) ) |
21 |
1 14
|
mulg1 |
⊢ ( 𝐶 ∈ 𝐵 → ( 1 ( .g ‘ 𝐺 ) 𝐶 ) = 𝐶 ) |
22 |
4 21
|
syl |
⊢ ( 𝜑 → ( 1 ( .g ‘ 𝐺 ) 𝐶 ) = 𝐶 ) |
23 |
17 20 22
|
3eqtrd |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ { 𝑀 } ↦ 𝐴 ) ) = 𝐶 ) |