| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsumsnd.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 2 |
|
gsumsnd.g |
⊢ ( 𝜑 → 𝐺 ∈ Mnd ) |
| 3 |
|
gsumsnd.m |
⊢ ( 𝜑 → 𝑀 ∈ 𝑉 ) |
| 4 |
|
gsumsnd.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝐵 ) |
| 5 |
|
gsumsnd.s |
⊢ ( ( 𝜑 ∧ 𝑘 = 𝑀 ) → 𝐴 = 𝐶 ) |
| 6 |
|
gsumsnfd.p |
⊢ Ⅎ 𝑘 𝜑 |
| 7 |
|
gsumsnfd.c |
⊢ Ⅎ 𝑘 𝐶 |
| 8 |
|
elsni |
⊢ ( 𝑘 ∈ { 𝑀 } → 𝑘 = 𝑀 ) |
| 9 |
8 5
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑀 } ) → 𝐴 = 𝐶 ) |
| 10 |
6 9
|
mpteq2da |
⊢ ( 𝜑 → ( 𝑘 ∈ { 𝑀 } ↦ 𝐴 ) = ( 𝑘 ∈ { 𝑀 } ↦ 𝐶 ) ) |
| 11 |
10
|
oveq2d |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ { 𝑀 } ↦ 𝐴 ) ) = ( 𝐺 Σg ( 𝑘 ∈ { 𝑀 } ↦ 𝐶 ) ) ) |
| 12 |
|
snfi |
⊢ { 𝑀 } ∈ Fin |
| 13 |
12
|
a1i |
⊢ ( 𝜑 → { 𝑀 } ∈ Fin ) |
| 14 |
|
eqid |
⊢ ( .g ‘ 𝐺 ) = ( .g ‘ 𝐺 ) |
| 15 |
7 1 14
|
gsumconstf |
⊢ ( ( 𝐺 ∈ Mnd ∧ { 𝑀 } ∈ Fin ∧ 𝐶 ∈ 𝐵 ) → ( 𝐺 Σg ( 𝑘 ∈ { 𝑀 } ↦ 𝐶 ) ) = ( ( ♯ ‘ { 𝑀 } ) ( .g ‘ 𝐺 ) 𝐶 ) ) |
| 16 |
2 13 4 15
|
syl3anc |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ { 𝑀 } ↦ 𝐶 ) ) = ( ( ♯ ‘ { 𝑀 } ) ( .g ‘ 𝐺 ) 𝐶 ) ) |
| 17 |
11 16
|
eqtrd |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ { 𝑀 } ↦ 𝐴 ) ) = ( ( ♯ ‘ { 𝑀 } ) ( .g ‘ 𝐺 ) 𝐶 ) ) |
| 18 |
|
hashsng |
⊢ ( 𝑀 ∈ 𝑉 → ( ♯ ‘ { 𝑀 } ) = 1 ) |
| 19 |
3 18
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ { 𝑀 } ) = 1 ) |
| 20 |
19
|
oveq1d |
⊢ ( 𝜑 → ( ( ♯ ‘ { 𝑀 } ) ( .g ‘ 𝐺 ) 𝐶 ) = ( 1 ( .g ‘ 𝐺 ) 𝐶 ) ) |
| 21 |
1 14
|
mulg1 |
⊢ ( 𝐶 ∈ 𝐵 → ( 1 ( .g ‘ 𝐺 ) 𝐶 ) = 𝐶 ) |
| 22 |
4 21
|
syl |
⊢ ( 𝜑 → ( 1 ( .g ‘ 𝐺 ) 𝐶 ) = 𝐶 ) |
| 23 |
17 20 22
|
3eqtrd |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ { 𝑀 } ↦ 𝐴 ) ) = 𝐶 ) |