Metamath Proof Explorer


Theorem gsumsplit

Description: Split a group sum into two parts. (Contributed by Mario Carneiro, 19-Dec-2014) (Revised by AV, 5-Jun-2019)

Ref Expression
Hypotheses gsumsplit.b 𝐵 = ( Base ‘ 𝐺 )
gsumsplit.z 0 = ( 0g𝐺 )
gsumsplit.p + = ( +g𝐺 )
gsumsplit.g ( 𝜑𝐺 ∈ CMnd )
gsumsplit.a ( 𝜑𝐴𝑉 )
gsumsplit.f ( 𝜑𝐹 : 𝐴𝐵 )
gsumsplit.w ( 𝜑𝐹 finSupp 0 )
gsumsplit.i ( 𝜑 → ( 𝐶𝐷 ) = ∅ )
gsumsplit.u ( 𝜑𝐴 = ( 𝐶𝐷 ) )
Assertion gsumsplit ( 𝜑 → ( 𝐺 Σg 𝐹 ) = ( ( 𝐺 Σg ( 𝐹𝐶 ) ) + ( 𝐺 Σg ( 𝐹𝐷 ) ) ) )

Proof

Step Hyp Ref Expression
1 gsumsplit.b 𝐵 = ( Base ‘ 𝐺 )
2 gsumsplit.z 0 = ( 0g𝐺 )
3 gsumsplit.p + = ( +g𝐺 )
4 gsumsplit.g ( 𝜑𝐺 ∈ CMnd )
5 gsumsplit.a ( 𝜑𝐴𝑉 )
6 gsumsplit.f ( 𝜑𝐹 : 𝐴𝐵 )
7 gsumsplit.w ( 𝜑𝐹 finSupp 0 )
8 gsumsplit.i ( 𝜑 → ( 𝐶𝐷 ) = ∅ )
9 gsumsplit.u ( 𝜑𝐴 = ( 𝐶𝐷 ) )
10 eqid ( Cntz ‘ 𝐺 ) = ( Cntz ‘ 𝐺 )
11 cmnmnd ( 𝐺 ∈ CMnd → 𝐺 ∈ Mnd )
12 4 11 syl ( 𝜑𝐺 ∈ Mnd )
13 1 10 4 6 cntzcmnf ( 𝜑 → ran 𝐹 ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ran 𝐹 ) )
14 1 2 3 10 12 5 6 13 7 8 9 gsumzsplit ( 𝜑 → ( 𝐺 Σg 𝐹 ) = ( ( 𝐺 Σg ( 𝐹𝐶 ) ) + ( 𝐺 Σg ( 𝐹𝐷 ) ) ) )