Metamath Proof Explorer
Description: Split a group sum into two parts. (Contributed by Mario Carneiro, 19-Dec-2014) (Revised by AV, 5-Jun-2019)
|
|
Ref |
Expression |
|
Hypotheses |
gsumsplit.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
|
|
gsumsplit.z |
⊢ 0 = ( 0g ‘ 𝐺 ) |
|
|
gsumsplit.p |
⊢ + = ( +g ‘ 𝐺 ) |
|
|
gsumsplit.g |
⊢ ( 𝜑 → 𝐺 ∈ CMnd ) |
|
|
gsumsplit.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
|
|
gsumsplit.f |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
|
|
gsumsplit.w |
⊢ ( 𝜑 → 𝐹 finSupp 0 ) |
|
|
gsumsplit.i |
⊢ ( 𝜑 → ( 𝐶 ∩ 𝐷 ) = ∅ ) |
|
|
gsumsplit.u |
⊢ ( 𝜑 → 𝐴 = ( 𝐶 ∪ 𝐷 ) ) |
|
Assertion |
gsumsplit |
⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) = ( ( 𝐺 Σg ( 𝐹 ↾ 𝐶 ) ) + ( 𝐺 Σg ( 𝐹 ↾ 𝐷 ) ) ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
gsumsplit.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
gsumsplit.z |
⊢ 0 = ( 0g ‘ 𝐺 ) |
3 |
|
gsumsplit.p |
⊢ + = ( +g ‘ 𝐺 ) |
4 |
|
gsumsplit.g |
⊢ ( 𝜑 → 𝐺 ∈ CMnd ) |
5 |
|
gsumsplit.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
6 |
|
gsumsplit.f |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
7 |
|
gsumsplit.w |
⊢ ( 𝜑 → 𝐹 finSupp 0 ) |
8 |
|
gsumsplit.i |
⊢ ( 𝜑 → ( 𝐶 ∩ 𝐷 ) = ∅ ) |
9 |
|
gsumsplit.u |
⊢ ( 𝜑 → 𝐴 = ( 𝐶 ∪ 𝐷 ) ) |
10 |
|
eqid |
⊢ ( Cntz ‘ 𝐺 ) = ( Cntz ‘ 𝐺 ) |
11 |
|
cmnmnd |
⊢ ( 𝐺 ∈ CMnd → 𝐺 ∈ Mnd ) |
12 |
4 11
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ Mnd ) |
13 |
1 10 4 6
|
cntzcmnf |
⊢ ( 𝜑 → ran 𝐹 ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ran 𝐹 ) ) |
14 |
1 2 3 10 12 5 6 13 7 8 9
|
gsumzsplit |
⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) = ( ( 𝐺 Σg ( 𝐹 ↾ 𝐶 ) ) + ( 𝐺 Σg ( 𝐹 ↾ 𝐷 ) ) ) ) |