Step |
Hyp |
Ref |
Expression |
1 |
|
gsumsplit1r.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
gsumsplit1r.p |
⊢ + = ( +g ‘ 𝐺 ) |
3 |
|
gsumsplit1r.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝑉 ) |
4 |
|
gsumsplit1r.m |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
5 |
|
gsumsplit1r.n |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
6 |
|
gsumsplit1r.f |
⊢ ( 𝜑 → 𝐹 : ( 𝑀 ... ( 𝑁 + 1 ) ) ⟶ 𝐵 ) |
7 |
|
peano2uz |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
8 |
5 7
|
syl |
⊢ ( 𝜑 → ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
9 |
1 2 3 8 6
|
gsumval2 |
⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑁 + 1 ) ) ) |
10 |
|
seqp1 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑁 + 1 ) ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) + ( 𝐹 ‘ ( 𝑁 + 1 ) ) ) ) |
11 |
5 10
|
syl |
⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑁 + 1 ) ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) + ( 𝐹 ‘ ( 𝑁 + 1 ) ) ) ) |
12 |
|
fzssp1 |
⊢ ( 𝑀 ... 𝑁 ) ⊆ ( 𝑀 ... ( 𝑁 + 1 ) ) |
13 |
12
|
a1i |
⊢ ( 𝜑 → ( 𝑀 ... 𝑁 ) ⊆ ( 𝑀 ... ( 𝑁 + 1 ) ) ) |
14 |
6 13
|
fssresd |
⊢ ( 𝜑 → ( 𝐹 ↾ ( 𝑀 ... 𝑁 ) ) : ( 𝑀 ... 𝑁 ) ⟶ 𝐵 ) |
15 |
1 2 3 5 14
|
gsumval2 |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝐹 ↾ ( 𝑀 ... 𝑁 ) ) ) = ( seq 𝑀 ( + , ( 𝐹 ↾ ( 𝑀 ... 𝑁 ) ) ) ‘ 𝑁 ) ) |
16 |
4
|
uzidd |
⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
17 |
|
seq1 |
⊢ ( 𝑀 ∈ ℤ → ( seq 𝑀 ( + , ( 𝐹 ↾ ( 𝑀 ... 𝑁 ) ) ) ‘ 𝑀 ) = ( ( 𝐹 ↾ ( 𝑀 ... 𝑁 ) ) ‘ 𝑀 ) ) |
18 |
4 17
|
syl |
⊢ ( 𝜑 → ( seq 𝑀 ( + , ( 𝐹 ↾ ( 𝑀 ... 𝑁 ) ) ) ‘ 𝑀 ) = ( ( 𝐹 ↾ ( 𝑀 ... 𝑁 ) ) ‘ 𝑀 ) ) |
19 |
|
eluzfz1 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ( 𝑀 ... 𝑁 ) ) |
20 |
5 19
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ ( 𝑀 ... 𝑁 ) ) |
21 |
20
|
fvresd |
⊢ ( 𝜑 → ( ( 𝐹 ↾ ( 𝑀 ... 𝑁 ) ) ‘ 𝑀 ) = ( 𝐹 ‘ 𝑀 ) ) |
22 |
18 21
|
eqtrd |
⊢ ( 𝜑 → ( seq 𝑀 ( + , ( 𝐹 ↾ ( 𝑀 ... 𝑁 ) ) ) ‘ 𝑀 ) = ( 𝐹 ‘ 𝑀 ) ) |
23 |
|
fzp1ss |
⊢ ( 𝑀 ∈ ℤ → ( ( 𝑀 + 1 ) ... 𝑁 ) ⊆ ( 𝑀 ... 𝑁 ) ) |
24 |
4 23
|
syl |
⊢ ( 𝜑 → ( ( 𝑀 + 1 ) ... 𝑁 ) ⊆ ( 𝑀 ... 𝑁 ) ) |
25 |
24
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) → 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) |
26 |
25
|
fvresd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) → ( ( 𝐹 ↾ ( 𝑀 ... 𝑁 ) ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
27 |
16 22 5 26
|
seqfveq2 |
⊢ ( 𝜑 → ( seq 𝑀 ( + , ( 𝐹 ↾ ( 𝑀 ... 𝑁 ) ) ) ‘ 𝑁 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) |
28 |
15 27
|
eqtr2d |
⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) = ( 𝐺 Σg ( 𝐹 ↾ ( 𝑀 ... 𝑁 ) ) ) ) |
29 |
28
|
oveq1d |
⊢ ( 𝜑 → ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) + ( 𝐹 ‘ ( 𝑁 + 1 ) ) ) = ( ( 𝐺 Σg ( 𝐹 ↾ ( 𝑀 ... 𝑁 ) ) ) + ( 𝐹 ‘ ( 𝑁 + 1 ) ) ) ) |
30 |
9 11 29
|
3eqtrd |
⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) = ( ( 𝐺 Σg ( 𝐹 ↾ ( 𝑀 ... 𝑁 ) ) ) + ( 𝐹 ‘ ( 𝑁 + 1 ) ) ) ) |