| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gsumsplit1r.b | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | gsumsplit1r.p | ⊢  +   =  ( +g ‘ 𝐺 ) | 
						
							| 3 |  | gsumsplit1r.g | ⊢ ( 𝜑  →  𝐺  ∈  𝑉 ) | 
						
							| 4 |  | gsumsplit1r.m | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 5 |  | gsumsplit1r.n | ⊢ ( 𝜑  →  𝑁  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 6 |  | gsumsplit1r.f | ⊢ ( 𝜑  →  𝐹 : ( 𝑀 ... ( 𝑁  +  1 ) ) ⟶ 𝐵 ) | 
						
							| 7 |  | peano2uz | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( 𝑁  +  1 )  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 8 | 5 7 | syl | ⊢ ( 𝜑  →  ( 𝑁  +  1 )  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 9 | 1 2 3 8 6 | gsumval2 | ⊢ ( 𝜑  →  ( 𝐺  Σg  𝐹 )  =  ( seq 𝑀 (  +  ,  𝐹 ) ‘ ( 𝑁  +  1 ) ) ) | 
						
							| 10 |  | seqp1 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( seq 𝑀 (  +  ,  𝐹 ) ‘ ( 𝑁  +  1 ) )  =  ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑁 )  +  ( 𝐹 ‘ ( 𝑁  +  1 ) ) ) ) | 
						
							| 11 | 5 10 | syl | ⊢ ( 𝜑  →  ( seq 𝑀 (  +  ,  𝐹 ) ‘ ( 𝑁  +  1 ) )  =  ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑁 )  +  ( 𝐹 ‘ ( 𝑁  +  1 ) ) ) ) | 
						
							| 12 |  | fzssp1 | ⊢ ( 𝑀 ... 𝑁 )  ⊆  ( 𝑀 ... ( 𝑁  +  1 ) ) | 
						
							| 13 | 12 | a1i | ⊢ ( 𝜑  →  ( 𝑀 ... 𝑁 )  ⊆  ( 𝑀 ... ( 𝑁  +  1 ) ) ) | 
						
							| 14 | 6 13 | fssresd | ⊢ ( 𝜑  →  ( 𝐹  ↾  ( 𝑀 ... 𝑁 ) ) : ( 𝑀 ... 𝑁 ) ⟶ 𝐵 ) | 
						
							| 15 | 1 2 3 5 14 | gsumval2 | ⊢ ( 𝜑  →  ( 𝐺  Σg  ( 𝐹  ↾  ( 𝑀 ... 𝑁 ) ) )  =  ( seq 𝑀 (  +  ,  ( 𝐹  ↾  ( 𝑀 ... 𝑁 ) ) ) ‘ 𝑁 ) ) | 
						
							| 16 | 4 | uzidd | ⊢ ( 𝜑  →  𝑀  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 17 |  | seq1 | ⊢ ( 𝑀  ∈  ℤ  →  ( seq 𝑀 (  +  ,  ( 𝐹  ↾  ( 𝑀 ... 𝑁 ) ) ) ‘ 𝑀 )  =  ( ( 𝐹  ↾  ( 𝑀 ... 𝑁 ) ) ‘ 𝑀 ) ) | 
						
							| 18 | 4 17 | syl | ⊢ ( 𝜑  →  ( seq 𝑀 (  +  ,  ( 𝐹  ↾  ( 𝑀 ... 𝑁 ) ) ) ‘ 𝑀 )  =  ( ( 𝐹  ↾  ( 𝑀 ... 𝑁 ) ) ‘ 𝑀 ) ) | 
						
							| 19 |  | eluzfz1 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  𝑀  ∈  ( 𝑀 ... 𝑁 ) ) | 
						
							| 20 | 5 19 | syl | ⊢ ( 𝜑  →  𝑀  ∈  ( 𝑀 ... 𝑁 ) ) | 
						
							| 21 | 20 | fvresd | ⊢ ( 𝜑  →  ( ( 𝐹  ↾  ( 𝑀 ... 𝑁 ) ) ‘ 𝑀 )  =  ( 𝐹 ‘ 𝑀 ) ) | 
						
							| 22 | 18 21 | eqtrd | ⊢ ( 𝜑  →  ( seq 𝑀 (  +  ,  ( 𝐹  ↾  ( 𝑀 ... 𝑁 ) ) ) ‘ 𝑀 )  =  ( 𝐹 ‘ 𝑀 ) ) | 
						
							| 23 |  | fzp1ss | ⊢ ( 𝑀  ∈  ℤ  →  ( ( 𝑀  +  1 ) ... 𝑁 )  ⊆  ( 𝑀 ... 𝑁 ) ) | 
						
							| 24 | 4 23 | syl | ⊢ ( 𝜑  →  ( ( 𝑀  +  1 ) ... 𝑁 )  ⊆  ( 𝑀 ... 𝑁 ) ) | 
						
							| 25 | 24 | sselda | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) )  →  𝑥  ∈  ( 𝑀 ... 𝑁 ) ) | 
						
							| 26 | 25 | fvresd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) )  →  ( ( 𝐹  ↾  ( 𝑀 ... 𝑁 ) ) ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 27 | 16 22 5 26 | seqfveq2 | ⊢ ( 𝜑  →  ( seq 𝑀 (  +  ,  ( 𝐹  ↾  ( 𝑀 ... 𝑁 ) ) ) ‘ 𝑁 )  =  ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑁 ) ) | 
						
							| 28 | 15 27 | eqtr2d | ⊢ ( 𝜑  →  ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑁 )  =  ( 𝐺  Σg  ( 𝐹  ↾  ( 𝑀 ... 𝑁 ) ) ) ) | 
						
							| 29 | 28 | oveq1d | ⊢ ( 𝜑  →  ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑁 )  +  ( 𝐹 ‘ ( 𝑁  +  1 ) ) )  =  ( ( 𝐺  Σg  ( 𝐹  ↾  ( 𝑀 ... 𝑁 ) ) )  +  ( 𝐹 ‘ ( 𝑁  +  1 ) ) ) ) | 
						
							| 30 | 9 11 29 | 3eqtrd | ⊢ ( 𝜑  →  ( 𝐺  Σg  𝐹 )  =  ( ( 𝐺  Σg  ( 𝐹  ↾  ( 𝑀 ... 𝑁 ) ) )  +  ( 𝐹 ‘ ( 𝑁  +  1 ) ) ) ) |