Metamath Proof Explorer


Theorem gsumsub

Description: The difference of two group sums. (Contributed by Mario Carneiro, 28-Dec-2014) (Revised by AV, 6-Jun-2019)

Ref Expression
Hypotheses gsumsub.b 𝐵 = ( Base ‘ 𝐺 )
gsumsub.z 0 = ( 0g𝐺 )
gsumsub.m = ( -g𝐺 )
gsumsub.g ( 𝜑𝐺 ∈ Abel )
gsumsub.a ( 𝜑𝐴𝑉 )
gsumsub.f ( 𝜑𝐹 : 𝐴𝐵 )
gsumsub.h ( 𝜑𝐻 : 𝐴𝐵 )
gsumsub.fn ( 𝜑𝐹 finSupp 0 )
gsumsub.hn ( 𝜑𝐻 finSupp 0 )
Assertion gsumsub ( 𝜑 → ( 𝐺 Σg ( 𝐹f 𝐻 ) ) = ( ( 𝐺 Σg 𝐹 ) ( 𝐺 Σg 𝐻 ) ) )

Proof

Step Hyp Ref Expression
1 gsumsub.b 𝐵 = ( Base ‘ 𝐺 )
2 gsumsub.z 0 = ( 0g𝐺 )
3 gsumsub.m = ( -g𝐺 )
4 gsumsub.g ( 𝜑𝐺 ∈ Abel )
5 gsumsub.a ( 𝜑𝐴𝑉 )
6 gsumsub.f ( 𝜑𝐹 : 𝐴𝐵 )
7 gsumsub.h ( 𝜑𝐻 : 𝐴𝐵 )
8 gsumsub.fn ( 𝜑𝐹 finSupp 0 )
9 gsumsub.hn ( 𝜑𝐻 finSupp 0 )
10 eqid ( +g𝐺 ) = ( +g𝐺 )
11 ablcmn ( 𝐺 ∈ Abel → 𝐺 ∈ CMnd )
12 4 11 syl ( 𝜑𝐺 ∈ CMnd )
13 eqid ( invg𝐺 ) = ( invg𝐺 )
14 ablgrp ( 𝐺 ∈ Abel → 𝐺 ∈ Grp )
15 4 14 syl ( 𝜑𝐺 ∈ Grp )
16 1 13 15 grpinvf1o ( 𝜑 → ( invg𝐺 ) : 𝐵1-1-onto𝐵 )
17 f1of ( ( invg𝐺 ) : 𝐵1-1-onto𝐵 → ( invg𝐺 ) : 𝐵𝐵 )
18 16 17 syl ( 𝜑 → ( invg𝐺 ) : 𝐵𝐵 )
19 fco ( ( ( invg𝐺 ) : 𝐵𝐵𝐻 : 𝐴𝐵 ) → ( ( invg𝐺 ) ∘ 𝐻 ) : 𝐴𝐵 )
20 18 7 19 syl2anc ( 𝜑 → ( ( invg𝐺 ) ∘ 𝐻 ) : 𝐴𝐵 )
21 2 fvexi 0 ∈ V
22 21 a1i ( 𝜑0 ∈ V )
23 1 fvexi 𝐵 ∈ V
24 23 a1i ( 𝜑𝐵 ∈ V )
25 2 13 grpinvid ( 𝐺 ∈ Grp → ( ( invg𝐺 ) ‘ 0 ) = 0 )
26 15 25 syl ( 𝜑 → ( ( invg𝐺 ) ‘ 0 ) = 0 )
27 22 7 18 5 24 9 26 fsuppco2 ( 𝜑 → ( ( invg𝐺 ) ∘ 𝐻 ) finSupp 0 )
28 1 2 10 12 5 6 20 8 27 gsumadd ( 𝜑 → ( 𝐺 Σg ( 𝐹f ( +g𝐺 ) ( ( invg𝐺 ) ∘ 𝐻 ) ) ) = ( ( 𝐺 Σg 𝐹 ) ( +g𝐺 ) ( 𝐺 Σg ( ( invg𝐺 ) ∘ 𝐻 ) ) ) )
29 1 2 13 4 5 7 9 gsuminv ( 𝜑 → ( 𝐺 Σg ( ( invg𝐺 ) ∘ 𝐻 ) ) = ( ( invg𝐺 ) ‘ ( 𝐺 Σg 𝐻 ) ) )
30 29 oveq2d ( 𝜑 → ( ( 𝐺 Σg 𝐹 ) ( +g𝐺 ) ( 𝐺 Σg ( ( invg𝐺 ) ∘ 𝐻 ) ) ) = ( ( 𝐺 Σg 𝐹 ) ( +g𝐺 ) ( ( invg𝐺 ) ‘ ( 𝐺 Σg 𝐻 ) ) ) )
31 28 30 eqtrd ( 𝜑 → ( 𝐺 Σg ( 𝐹f ( +g𝐺 ) ( ( invg𝐺 ) ∘ 𝐻 ) ) ) = ( ( 𝐺 Σg 𝐹 ) ( +g𝐺 ) ( ( invg𝐺 ) ‘ ( 𝐺 Σg 𝐻 ) ) ) )
32 6 ffvelrnda ( ( 𝜑𝑘𝐴 ) → ( 𝐹𝑘 ) ∈ 𝐵 )
33 7 ffvelrnda ( ( 𝜑𝑘𝐴 ) → ( 𝐻𝑘 ) ∈ 𝐵 )
34 1 10 13 3 grpsubval ( ( ( 𝐹𝑘 ) ∈ 𝐵 ∧ ( 𝐻𝑘 ) ∈ 𝐵 ) → ( ( 𝐹𝑘 ) ( 𝐻𝑘 ) ) = ( ( 𝐹𝑘 ) ( +g𝐺 ) ( ( invg𝐺 ) ‘ ( 𝐻𝑘 ) ) ) )
35 32 33 34 syl2anc ( ( 𝜑𝑘𝐴 ) → ( ( 𝐹𝑘 ) ( 𝐻𝑘 ) ) = ( ( 𝐹𝑘 ) ( +g𝐺 ) ( ( invg𝐺 ) ‘ ( 𝐻𝑘 ) ) ) )
36 35 mpteq2dva ( 𝜑 → ( 𝑘𝐴 ↦ ( ( 𝐹𝑘 ) ( 𝐻𝑘 ) ) ) = ( 𝑘𝐴 ↦ ( ( 𝐹𝑘 ) ( +g𝐺 ) ( ( invg𝐺 ) ‘ ( 𝐻𝑘 ) ) ) ) )
37 6 feqmptd ( 𝜑𝐹 = ( 𝑘𝐴 ↦ ( 𝐹𝑘 ) ) )
38 7 feqmptd ( 𝜑𝐻 = ( 𝑘𝐴 ↦ ( 𝐻𝑘 ) ) )
39 5 32 33 37 38 offval2 ( 𝜑 → ( 𝐹f 𝐻 ) = ( 𝑘𝐴 ↦ ( ( 𝐹𝑘 ) ( 𝐻𝑘 ) ) ) )
40 fvexd ( ( 𝜑𝑘𝐴 ) → ( ( invg𝐺 ) ‘ ( 𝐻𝑘 ) ) ∈ V )
41 18 feqmptd ( 𝜑 → ( invg𝐺 ) = ( 𝑥𝐵 ↦ ( ( invg𝐺 ) ‘ 𝑥 ) ) )
42 fveq2 ( 𝑥 = ( 𝐻𝑘 ) → ( ( invg𝐺 ) ‘ 𝑥 ) = ( ( invg𝐺 ) ‘ ( 𝐻𝑘 ) ) )
43 33 38 41 42 fmptco ( 𝜑 → ( ( invg𝐺 ) ∘ 𝐻 ) = ( 𝑘𝐴 ↦ ( ( invg𝐺 ) ‘ ( 𝐻𝑘 ) ) ) )
44 5 32 40 37 43 offval2 ( 𝜑 → ( 𝐹f ( +g𝐺 ) ( ( invg𝐺 ) ∘ 𝐻 ) ) = ( 𝑘𝐴 ↦ ( ( 𝐹𝑘 ) ( +g𝐺 ) ( ( invg𝐺 ) ‘ ( 𝐻𝑘 ) ) ) ) )
45 36 39 44 3eqtr4d ( 𝜑 → ( 𝐹f 𝐻 ) = ( 𝐹f ( +g𝐺 ) ( ( invg𝐺 ) ∘ 𝐻 ) ) )
46 45 oveq2d ( 𝜑 → ( 𝐺 Σg ( 𝐹f 𝐻 ) ) = ( 𝐺 Σg ( 𝐹f ( +g𝐺 ) ( ( invg𝐺 ) ∘ 𝐻 ) ) ) )
47 1 2 12 5 6 8 gsumcl ( 𝜑 → ( 𝐺 Σg 𝐹 ) ∈ 𝐵 )
48 1 2 12 5 7 9 gsumcl ( 𝜑 → ( 𝐺 Σg 𝐻 ) ∈ 𝐵 )
49 1 10 13 3 grpsubval ( ( ( 𝐺 Σg 𝐹 ) ∈ 𝐵 ∧ ( 𝐺 Σg 𝐻 ) ∈ 𝐵 ) → ( ( 𝐺 Σg 𝐹 ) ( 𝐺 Σg 𝐻 ) ) = ( ( 𝐺 Σg 𝐹 ) ( +g𝐺 ) ( ( invg𝐺 ) ‘ ( 𝐺 Σg 𝐻 ) ) ) )
50 47 48 49 syl2anc ( 𝜑 → ( ( 𝐺 Σg 𝐹 ) ( 𝐺 Σg 𝐻 ) ) = ( ( 𝐺 Σg 𝐹 ) ( +g𝐺 ) ( ( invg𝐺 ) ‘ ( 𝐺 Σg 𝐻 ) ) ) )
51 31 46 50 3eqtr4d ( 𝜑 → ( 𝐺 Σg ( 𝐹f 𝐻 ) ) = ( ( 𝐺 Σg 𝐹 ) ( 𝐺 Σg 𝐻 ) ) )