Step |
Hyp |
Ref |
Expression |
1 |
|
gsumsub.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
gsumsub.z |
⊢ 0 = ( 0g ‘ 𝐺 ) |
3 |
|
gsumsub.m |
⊢ − = ( -g ‘ 𝐺 ) |
4 |
|
gsumsub.g |
⊢ ( 𝜑 → 𝐺 ∈ Abel ) |
5 |
|
gsumsub.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
6 |
|
gsumsub.f |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
7 |
|
gsumsub.h |
⊢ ( 𝜑 → 𝐻 : 𝐴 ⟶ 𝐵 ) |
8 |
|
gsumsub.fn |
⊢ ( 𝜑 → 𝐹 finSupp 0 ) |
9 |
|
gsumsub.hn |
⊢ ( 𝜑 → 𝐻 finSupp 0 ) |
10 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
11 |
|
ablcmn |
⊢ ( 𝐺 ∈ Abel → 𝐺 ∈ CMnd ) |
12 |
4 11
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ CMnd ) |
13 |
|
eqid |
⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) |
14 |
|
ablgrp |
⊢ ( 𝐺 ∈ Abel → 𝐺 ∈ Grp ) |
15 |
4 14
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
16 |
1 13 15
|
grpinvf1o |
⊢ ( 𝜑 → ( invg ‘ 𝐺 ) : 𝐵 –1-1-onto→ 𝐵 ) |
17 |
|
f1of |
⊢ ( ( invg ‘ 𝐺 ) : 𝐵 –1-1-onto→ 𝐵 → ( invg ‘ 𝐺 ) : 𝐵 ⟶ 𝐵 ) |
18 |
16 17
|
syl |
⊢ ( 𝜑 → ( invg ‘ 𝐺 ) : 𝐵 ⟶ 𝐵 ) |
19 |
|
fco |
⊢ ( ( ( invg ‘ 𝐺 ) : 𝐵 ⟶ 𝐵 ∧ 𝐻 : 𝐴 ⟶ 𝐵 ) → ( ( invg ‘ 𝐺 ) ∘ 𝐻 ) : 𝐴 ⟶ 𝐵 ) |
20 |
18 7 19
|
syl2anc |
⊢ ( 𝜑 → ( ( invg ‘ 𝐺 ) ∘ 𝐻 ) : 𝐴 ⟶ 𝐵 ) |
21 |
2
|
fvexi |
⊢ 0 ∈ V |
22 |
21
|
a1i |
⊢ ( 𝜑 → 0 ∈ V ) |
23 |
1
|
fvexi |
⊢ 𝐵 ∈ V |
24 |
23
|
a1i |
⊢ ( 𝜑 → 𝐵 ∈ V ) |
25 |
2 13
|
grpinvid |
⊢ ( 𝐺 ∈ Grp → ( ( invg ‘ 𝐺 ) ‘ 0 ) = 0 ) |
26 |
15 25
|
syl |
⊢ ( 𝜑 → ( ( invg ‘ 𝐺 ) ‘ 0 ) = 0 ) |
27 |
22 7 18 5 24 9 26
|
fsuppco2 |
⊢ ( 𝜑 → ( ( invg ‘ 𝐺 ) ∘ 𝐻 ) finSupp 0 ) |
28 |
1 2 10 12 5 6 20 8 27
|
gsumadd |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝐹 ∘f ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ∘ 𝐻 ) ) ) = ( ( 𝐺 Σg 𝐹 ) ( +g ‘ 𝐺 ) ( 𝐺 Σg ( ( invg ‘ 𝐺 ) ∘ 𝐻 ) ) ) ) |
29 |
1 2 13 4 5 7 9
|
gsuminv |
⊢ ( 𝜑 → ( 𝐺 Σg ( ( invg ‘ 𝐺 ) ∘ 𝐻 ) ) = ( ( invg ‘ 𝐺 ) ‘ ( 𝐺 Σg 𝐻 ) ) ) |
30 |
29
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐺 Σg 𝐹 ) ( +g ‘ 𝐺 ) ( 𝐺 Σg ( ( invg ‘ 𝐺 ) ∘ 𝐻 ) ) ) = ( ( 𝐺 Σg 𝐹 ) ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ ( 𝐺 Σg 𝐻 ) ) ) ) |
31 |
28 30
|
eqtrd |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝐹 ∘f ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ∘ 𝐻 ) ) ) = ( ( 𝐺 Σg 𝐹 ) ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ ( 𝐺 Σg 𝐻 ) ) ) ) |
32 |
6
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑘 ) ∈ 𝐵 ) |
33 |
7
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝐻 ‘ 𝑘 ) ∈ 𝐵 ) |
34 |
1 10 13 3
|
grpsubval |
⊢ ( ( ( 𝐹 ‘ 𝑘 ) ∈ 𝐵 ∧ ( 𝐻 ‘ 𝑘 ) ∈ 𝐵 ) → ( ( 𝐹 ‘ 𝑘 ) − ( 𝐻 ‘ 𝑘 ) ) = ( ( 𝐹 ‘ 𝑘 ) ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ ( 𝐻 ‘ 𝑘 ) ) ) ) |
35 |
32 33 34
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑘 ) − ( 𝐻 ‘ 𝑘 ) ) = ( ( 𝐹 ‘ 𝑘 ) ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ ( 𝐻 ‘ 𝑘 ) ) ) ) |
36 |
35
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐻 ‘ 𝑘 ) ) ) = ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ ( 𝐻 ‘ 𝑘 ) ) ) ) ) |
37 |
6
|
feqmptd |
⊢ ( 𝜑 → 𝐹 = ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ) |
38 |
7
|
feqmptd |
⊢ ( 𝜑 → 𝐻 = ( 𝑘 ∈ 𝐴 ↦ ( 𝐻 ‘ 𝑘 ) ) ) |
39 |
5 32 33 37 38
|
offval2 |
⊢ ( 𝜑 → ( 𝐹 ∘f − 𝐻 ) = ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐻 ‘ 𝑘 ) ) ) ) |
40 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( ( invg ‘ 𝐺 ) ‘ ( 𝐻 ‘ 𝑘 ) ) ∈ V ) |
41 |
18
|
feqmptd |
⊢ ( 𝜑 → ( invg ‘ 𝐺 ) = ( 𝑥 ∈ 𝐵 ↦ ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ) ) |
42 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝐻 ‘ 𝑘 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) = ( ( invg ‘ 𝐺 ) ‘ ( 𝐻 ‘ 𝑘 ) ) ) |
43 |
33 38 41 42
|
fmptco |
⊢ ( 𝜑 → ( ( invg ‘ 𝐺 ) ∘ 𝐻 ) = ( 𝑘 ∈ 𝐴 ↦ ( ( invg ‘ 𝐺 ) ‘ ( 𝐻 ‘ 𝑘 ) ) ) ) |
44 |
5 32 40 37 43
|
offval2 |
⊢ ( 𝜑 → ( 𝐹 ∘f ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ∘ 𝐻 ) ) = ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ ( 𝐻 ‘ 𝑘 ) ) ) ) ) |
45 |
36 39 44
|
3eqtr4d |
⊢ ( 𝜑 → ( 𝐹 ∘f − 𝐻 ) = ( 𝐹 ∘f ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ∘ 𝐻 ) ) ) |
46 |
45
|
oveq2d |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝐹 ∘f − 𝐻 ) ) = ( 𝐺 Σg ( 𝐹 ∘f ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ∘ 𝐻 ) ) ) ) |
47 |
1 2 12 5 6 8
|
gsumcl |
⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) ∈ 𝐵 ) |
48 |
1 2 12 5 7 9
|
gsumcl |
⊢ ( 𝜑 → ( 𝐺 Σg 𝐻 ) ∈ 𝐵 ) |
49 |
1 10 13 3
|
grpsubval |
⊢ ( ( ( 𝐺 Σg 𝐹 ) ∈ 𝐵 ∧ ( 𝐺 Σg 𝐻 ) ∈ 𝐵 ) → ( ( 𝐺 Σg 𝐹 ) − ( 𝐺 Σg 𝐻 ) ) = ( ( 𝐺 Σg 𝐹 ) ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ ( 𝐺 Σg 𝐻 ) ) ) ) |
50 |
47 48 49
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐺 Σg 𝐹 ) − ( 𝐺 Σg 𝐻 ) ) = ( ( 𝐺 Σg 𝐹 ) ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ ( 𝐺 Σg 𝐻 ) ) ) ) |
51 |
31 46 50
|
3eqtr4d |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝐹 ∘f − 𝐻 ) ) = ( ( 𝐺 Σg 𝐹 ) − ( 𝐺 Σg 𝐻 ) ) ) |