| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gsumsub.b | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | gsumsub.z | ⊢  0   =  ( 0g ‘ 𝐺 ) | 
						
							| 3 |  | gsumsub.m | ⊢  −   =  ( -g ‘ 𝐺 ) | 
						
							| 4 |  | gsumsub.g | ⊢ ( 𝜑  →  𝐺  ∈  Abel ) | 
						
							| 5 |  | gsumsub.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑉 ) | 
						
							| 6 |  | gsumsub.f | ⊢ ( 𝜑  →  𝐹 : 𝐴 ⟶ 𝐵 ) | 
						
							| 7 |  | gsumsub.h | ⊢ ( 𝜑  →  𝐻 : 𝐴 ⟶ 𝐵 ) | 
						
							| 8 |  | gsumsub.fn | ⊢ ( 𝜑  →  𝐹  finSupp   0  ) | 
						
							| 9 |  | gsumsub.hn | ⊢ ( 𝜑  →  𝐻  finSupp   0  ) | 
						
							| 10 |  | eqid | ⊢ ( +g ‘ 𝐺 )  =  ( +g ‘ 𝐺 ) | 
						
							| 11 |  | ablcmn | ⊢ ( 𝐺  ∈  Abel  →  𝐺  ∈  CMnd ) | 
						
							| 12 | 4 11 | syl | ⊢ ( 𝜑  →  𝐺  ∈  CMnd ) | 
						
							| 13 |  | eqid | ⊢ ( invg ‘ 𝐺 )  =  ( invg ‘ 𝐺 ) | 
						
							| 14 |  | ablgrp | ⊢ ( 𝐺  ∈  Abel  →  𝐺  ∈  Grp ) | 
						
							| 15 | 4 14 | syl | ⊢ ( 𝜑  →  𝐺  ∈  Grp ) | 
						
							| 16 | 1 13 15 | grpinvf1o | ⊢ ( 𝜑  →  ( invg ‘ 𝐺 ) : 𝐵 –1-1-onto→ 𝐵 ) | 
						
							| 17 |  | f1of | ⊢ ( ( invg ‘ 𝐺 ) : 𝐵 –1-1-onto→ 𝐵  →  ( invg ‘ 𝐺 ) : 𝐵 ⟶ 𝐵 ) | 
						
							| 18 | 16 17 | syl | ⊢ ( 𝜑  →  ( invg ‘ 𝐺 ) : 𝐵 ⟶ 𝐵 ) | 
						
							| 19 |  | fco | ⊢ ( ( ( invg ‘ 𝐺 ) : 𝐵 ⟶ 𝐵  ∧  𝐻 : 𝐴 ⟶ 𝐵 )  →  ( ( invg ‘ 𝐺 )  ∘  𝐻 ) : 𝐴 ⟶ 𝐵 ) | 
						
							| 20 | 18 7 19 | syl2anc | ⊢ ( 𝜑  →  ( ( invg ‘ 𝐺 )  ∘  𝐻 ) : 𝐴 ⟶ 𝐵 ) | 
						
							| 21 | 2 | fvexi | ⊢  0   ∈  V | 
						
							| 22 | 21 | a1i | ⊢ ( 𝜑  →   0   ∈  V ) | 
						
							| 23 | 1 | fvexi | ⊢ 𝐵  ∈  V | 
						
							| 24 | 23 | a1i | ⊢ ( 𝜑  →  𝐵  ∈  V ) | 
						
							| 25 | 2 13 | grpinvid | ⊢ ( 𝐺  ∈  Grp  →  ( ( invg ‘ 𝐺 ) ‘  0  )  =   0  ) | 
						
							| 26 | 15 25 | syl | ⊢ ( 𝜑  →  ( ( invg ‘ 𝐺 ) ‘  0  )  =   0  ) | 
						
							| 27 | 22 7 18 5 24 9 26 | fsuppco2 | ⊢ ( 𝜑  →  ( ( invg ‘ 𝐺 )  ∘  𝐻 )  finSupp   0  ) | 
						
							| 28 | 1 2 10 12 5 6 20 8 27 | gsumadd | ⊢ ( 𝜑  →  ( 𝐺  Σg  ( 𝐹  ∘f  ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 )  ∘  𝐻 ) ) )  =  ( ( 𝐺  Σg  𝐹 ) ( +g ‘ 𝐺 ) ( 𝐺  Σg  ( ( invg ‘ 𝐺 )  ∘  𝐻 ) ) ) ) | 
						
							| 29 | 1 2 13 4 5 7 9 | gsuminv | ⊢ ( 𝜑  →  ( 𝐺  Σg  ( ( invg ‘ 𝐺 )  ∘  𝐻 ) )  =  ( ( invg ‘ 𝐺 ) ‘ ( 𝐺  Σg  𝐻 ) ) ) | 
						
							| 30 | 29 | oveq2d | ⊢ ( 𝜑  →  ( ( 𝐺  Σg  𝐹 ) ( +g ‘ 𝐺 ) ( 𝐺  Σg  ( ( invg ‘ 𝐺 )  ∘  𝐻 ) ) )  =  ( ( 𝐺  Σg  𝐹 ) ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ ( 𝐺  Σg  𝐻 ) ) ) ) | 
						
							| 31 | 28 30 | eqtrd | ⊢ ( 𝜑  →  ( 𝐺  Σg  ( 𝐹  ∘f  ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 )  ∘  𝐻 ) ) )  =  ( ( 𝐺  Σg  𝐹 ) ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ ( 𝐺  Σg  𝐻 ) ) ) ) | 
						
							| 32 | 6 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  ( 𝐹 ‘ 𝑘 )  ∈  𝐵 ) | 
						
							| 33 | 7 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  ( 𝐻 ‘ 𝑘 )  ∈  𝐵 ) | 
						
							| 34 | 1 10 13 3 | grpsubval | ⊢ ( ( ( 𝐹 ‘ 𝑘 )  ∈  𝐵  ∧  ( 𝐻 ‘ 𝑘 )  ∈  𝐵 )  →  ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐻 ‘ 𝑘 ) )  =  ( ( 𝐹 ‘ 𝑘 ) ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ ( 𝐻 ‘ 𝑘 ) ) ) ) | 
						
							| 35 | 32 33 34 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐻 ‘ 𝑘 ) )  =  ( ( 𝐹 ‘ 𝑘 ) ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ ( 𝐻 ‘ 𝑘 ) ) ) ) | 
						
							| 36 | 35 | mpteq2dva | ⊢ ( 𝜑  →  ( 𝑘  ∈  𝐴  ↦  ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐻 ‘ 𝑘 ) ) )  =  ( 𝑘  ∈  𝐴  ↦  ( ( 𝐹 ‘ 𝑘 ) ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ ( 𝐻 ‘ 𝑘 ) ) ) ) ) | 
						
							| 37 | 6 | feqmptd | ⊢ ( 𝜑  →  𝐹  =  ( 𝑘  ∈  𝐴  ↦  ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 38 | 7 | feqmptd | ⊢ ( 𝜑  →  𝐻  =  ( 𝑘  ∈  𝐴  ↦  ( 𝐻 ‘ 𝑘 ) ) ) | 
						
							| 39 | 5 32 33 37 38 | offval2 | ⊢ ( 𝜑  →  ( 𝐹  ∘f   −  𝐻 )  =  ( 𝑘  ∈  𝐴  ↦  ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐻 ‘ 𝑘 ) ) ) ) | 
						
							| 40 |  | fvexd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  ( ( invg ‘ 𝐺 ) ‘ ( 𝐻 ‘ 𝑘 ) )  ∈  V ) | 
						
							| 41 | 18 | feqmptd | ⊢ ( 𝜑  →  ( invg ‘ 𝐺 )  =  ( 𝑥  ∈  𝐵  ↦  ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ) ) | 
						
							| 42 |  | fveq2 | ⊢ ( 𝑥  =  ( 𝐻 ‘ 𝑘 )  →  ( ( invg ‘ 𝐺 ) ‘ 𝑥 )  =  ( ( invg ‘ 𝐺 ) ‘ ( 𝐻 ‘ 𝑘 ) ) ) | 
						
							| 43 | 33 38 41 42 | fmptco | ⊢ ( 𝜑  →  ( ( invg ‘ 𝐺 )  ∘  𝐻 )  =  ( 𝑘  ∈  𝐴  ↦  ( ( invg ‘ 𝐺 ) ‘ ( 𝐻 ‘ 𝑘 ) ) ) ) | 
						
							| 44 | 5 32 40 37 43 | offval2 | ⊢ ( 𝜑  →  ( 𝐹  ∘f  ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 )  ∘  𝐻 ) )  =  ( 𝑘  ∈  𝐴  ↦  ( ( 𝐹 ‘ 𝑘 ) ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ ( 𝐻 ‘ 𝑘 ) ) ) ) ) | 
						
							| 45 | 36 39 44 | 3eqtr4d | ⊢ ( 𝜑  →  ( 𝐹  ∘f   −  𝐻 )  =  ( 𝐹  ∘f  ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 )  ∘  𝐻 ) ) ) | 
						
							| 46 | 45 | oveq2d | ⊢ ( 𝜑  →  ( 𝐺  Σg  ( 𝐹  ∘f   −  𝐻 ) )  =  ( 𝐺  Σg  ( 𝐹  ∘f  ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 )  ∘  𝐻 ) ) ) ) | 
						
							| 47 | 1 2 12 5 6 8 | gsumcl | ⊢ ( 𝜑  →  ( 𝐺  Σg  𝐹 )  ∈  𝐵 ) | 
						
							| 48 | 1 2 12 5 7 9 | gsumcl | ⊢ ( 𝜑  →  ( 𝐺  Σg  𝐻 )  ∈  𝐵 ) | 
						
							| 49 | 1 10 13 3 | grpsubval | ⊢ ( ( ( 𝐺  Σg  𝐹 )  ∈  𝐵  ∧  ( 𝐺  Σg  𝐻 )  ∈  𝐵 )  →  ( ( 𝐺  Σg  𝐹 )  −  ( 𝐺  Σg  𝐻 ) )  =  ( ( 𝐺  Σg  𝐹 ) ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ ( 𝐺  Σg  𝐻 ) ) ) ) | 
						
							| 50 | 47 48 49 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝐺  Σg  𝐹 )  −  ( 𝐺  Σg  𝐻 ) )  =  ( ( 𝐺  Σg  𝐹 ) ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ ( 𝐺  Σg  𝐻 ) ) ) ) | 
						
							| 51 | 31 46 50 | 3eqtr4d | ⊢ ( 𝜑  →  ( 𝐺  Σg  ( 𝐹  ∘f   −  𝐻 ) )  =  ( ( 𝐺  Σg  𝐹 )  −  ( 𝐺  Σg  𝐻 ) ) ) |