Metamath Proof Explorer
		
		
		
		Description:  Append an element to a finite group sum.  (Contributed by Mario
       Carneiro, 19-Dec-2014)  (Proof shortened by AV, 8-Mar-2019)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | gsumunsn.b | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
					
						|  |  | gsumunsn.p | ⊢  +   =  ( +g ‘ 𝐺 ) | 
					
						|  |  | gsumunsn.g | ⊢ ( 𝜑  →  𝐺  ∈  CMnd ) | 
					
						|  |  | gsumunsn.a | ⊢ ( 𝜑  →  𝐴  ∈  Fin ) | 
					
						|  |  | gsumunsn.f | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  𝑋  ∈  𝐵 ) | 
					
						|  |  | gsumunsn.m | ⊢ ( 𝜑  →  𝑀  ∈  𝑉 ) | 
					
						|  |  | gsumunsn.d | ⊢ ( 𝜑  →  ¬  𝑀  ∈  𝐴 ) | 
					
						|  |  | gsumunsn.y | ⊢ ( 𝜑  →  𝑌  ∈  𝐵 ) | 
					
						|  |  | gsumunsn.s | ⊢ ( 𝑘  =  𝑀  →  𝑋  =  𝑌 ) | 
				
					|  | Assertion | gsumunsn | ⊢  ( 𝜑  →  ( 𝐺  Σg  ( 𝑘  ∈  ( 𝐴  ∪  { 𝑀 } )  ↦  𝑋 ) )  =  ( ( 𝐺  Σg  ( 𝑘  ∈  𝐴  ↦  𝑋 ) )  +  𝑌 ) ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gsumunsn.b | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | gsumunsn.p | ⊢  +   =  ( +g ‘ 𝐺 ) | 
						
							| 3 |  | gsumunsn.g | ⊢ ( 𝜑  →  𝐺  ∈  CMnd ) | 
						
							| 4 |  | gsumunsn.a | ⊢ ( 𝜑  →  𝐴  ∈  Fin ) | 
						
							| 5 |  | gsumunsn.f | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  𝑋  ∈  𝐵 ) | 
						
							| 6 |  | gsumunsn.m | ⊢ ( 𝜑  →  𝑀  ∈  𝑉 ) | 
						
							| 7 |  | gsumunsn.d | ⊢ ( 𝜑  →  ¬  𝑀  ∈  𝐴 ) | 
						
							| 8 |  | gsumunsn.y | ⊢ ( 𝜑  →  𝑌  ∈  𝐵 ) | 
						
							| 9 |  | gsumunsn.s | ⊢ ( 𝑘  =  𝑀  →  𝑋  =  𝑌 ) | 
						
							| 10 | 9 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  =  𝑀 )  →  𝑋  =  𝑌 ) | 
						
							| 11 | 1 2 3 4 5 6 7 8 10 | gsumunsnd | ⊢ ( 𝜑  →  ( 𝐺  Σg  ( 𝑘  ∈  ( 𝐴  ∪  { 𝑀 } )  ↦  𝑋 ) )  =  ( ( 𝐺  Σg  ( 𝑘  ∈  𝐴  ↦  𝑋 ) )  +  𝑌 ) ) |