Database BASIC ALGEBRAIC STRUCTURES Groups Abelian groups Group sum operation gsumunsnd  
				
		 
		
			
		 
		Description:   Append an element to a finite group sum.  (Contributed by Mario
       Carneiro , 19-Dec-2014)   (Revised by AV , 2-Jan-2019)   (Proof shortened by AV , 11-Dec-2019) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						gsumunsnd.b ⊢  𝐵   =  ( Base ‘ 𝐺  )  
					
						gsumunsnd.p ⊢   +    =  ( +g  ‘ 𝐺  )  
					
						gsumunsnd.g ⊢  ( 𝜑   →  𝐺   ∈  CMnd )  
					
						gsumunsnd.a ⊢  ( 𝜑   →  𝐴   ∈  Fin )  
					
						gsumunsnd.f ⊢  ( ( 𝜑   ∧  𝑘   ∈  𝐴  )  →  𝑋   ∈  𝐵  )  
					
						gsumunsnd.m ⊢  ( 𝜑   →  𝑀   ∈  𝑉  )  
					
						gsumunsnd.d ⊢  ( 𝜑   →  ¬  𝑀   ∈  𝐴  )  
					
						gsumunsnd.y ⊢  ( 𝜑   →  𝑌   ∈  𝐵  )  
					
						gsumunsnd.s ⊢  ( ( 𝜑   ∧  𝑘   =  𝑀  )  →  𝑋   =  𝑌  )  
				
					Assertion 
					gsumunsnd ⊢   ( 𝜑   →  ( 𝐺   Σg 𝑘   ∈  ( 𝐴   ∪  { 𝑀  } )  ↦  𝑋  ) )  =  ( ( 𝐺   Σg 𝑘   ∈  𝐴   ↦  𝑋  ) )  +   𝑌  ) )  
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							gsumunsnd.b ⊢  𝐵   =  ( Base ‘ 𝐺  )  
						
							2 
								
							 
							gsumunsnd.p ⊢   +    =  ( +g  ‘ 𝐺  )  
						
							3 
								
							 
							gsumunsnd.g ⊢  ( 𝜑   →  𝐺   ∈  CMnd )  
						
							4 
								
							 
							gsumunsnd.a ⊢  ( 𝜑   →  𝐴   ∈  Fin )  
						
							5 
								
							 
							gsumunsnd.f ⊢  ( ( 𝜑   ∧  𝑘   ∈  𝐴  )  →  𝑋   ∈  𝐵  )  
						
							6 
								
							 
							gsumunsnd.m ⊢  ( 𝜑   →  𝑀   ∈  𝑉  )  
						
							7 
								
							 
							gsumunsnd.d ⊢  ( 𝜑   →  ¬  𝑀   ∈  𝐴  )  
						
							8 
								
							 
							gsumunsnd.y ⊢  ( 𝜑   →  𝑌   ∈  𝐵  )  
						
							9 
								
							 
							gsumunsnd.s ⊢  ( ( 𝜑   ∧  𝑘   =  𝑀  )  →  𝑋   =  𝑌  )  
						
							10 
								
							 
							nfcv ⊢  Ⅎ  𝑘  𝑌   
						
							11 
								1  2  3  4  5  6  7  8  9  10 
							 
							gsumunsnfd ⊢  ( 𝜑   →  ( 𝐺   Σg 𝑘   ∈  ( 𝐴   ∪  { 𝑀  } )  ↦  𝑋  ) )  =  ( ( 𝐺   Σg 𝑘   ∈  𝐴   ↦  𝑋  ) )  +   𝑌  ) )