Metamath Proof Explorer


Theorem gsumunsnd

Description: Append an element to a finite group sum. (Contributed by Mario Carneiro, 19-Dec-2014) (Revised by AV, 2-Jan-2019) (Proof shortened by AV, 11-Dec-2019)

Ref Expression
Hypotheses gsumunsnd.b 𝐵 = ( Base ‘ 𝐺 )
gsumunsnd.p + = ( +g𝐺 )
gsumunsnd.g ( 𝜑𝐺 ∈ CMnd )
gsumunsnd.a ( 𝜑𝐴 ∈ Fin )
gsumunsnd.f ( ( 𝜑𝑘𝐴 ) → 𝑋𝐵 )
gsumunsnd.m ( 𝜑𝑀𝑉 )
gsumunsnd.d ( 𝜑 → ¬ 𝑀𝐴 )
gsumunsnd.y ( 𝜑𝑌𝐵 )
gsumunsnd.s ( ( 𝜑𝑘 = 𝑀 ) → 𝑋 = 𝑌 )
Assertion gsumunsnd ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 ∪ { 𝑀 } ) ↦ 𝑋 ) ) = ( ( 𝐺 Σg ( 𝑘𝐴𝑋 ) ) + 𝑌 ) )

Proof

Step Hyp Ref Expression
1 gsumunsnd.b 𝐵 = ( Base ‘ 𝐺 )
2 gsumunsnd.p + = ( +g𝐺 )
3 gsumunsnd.g ( 𝜑𝐺 ∈ CMnd )
4 gsumunsnd.a ( 𝜑𝐴 ∈ Fin )
5 gsumunsnd.f ( ( 𝜑𝑘𝐴 ) → 𝑋𝐵 )
6 gsumunsnd.m ( 𝜑𝑀𝑉 )
7 gsumunsnd.d ( 𝜑 → ¬ 𝑀𝐴 )
8 gsumunsnd.y ( 𝜑𝑌𝐵 )
9 gsumunsnd.s ( ( 𝜑𝑘 = 𝑀 ) → 𝑋 = 𝑌 )
10 nfcv 𝑘 𝑌
11 1 2 3 4 5 6 7 8 9 10 gsumunsnfd ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 ∪ { 𝑀 } ) ↦ 𝑋 ) ) = ( ( 𝐺 Σg ( 𝑘𝐴𝑋 ) ) + 𝑌 ) )