Database
BASIC ALGEBRAIC STRUCTURES
Groups
Abelian groups
Group sum operation
gsumunsnd
Metamath Proof Explorer
Description: Append an element to a finite group sum. (Contributed by Mario
Carneiro , 19-Dec-2014) (Revised by AV , 2-Jan-2019) (Proof shortened by AV , 11-Dec-2019)
Ref
Expression
Hypotheses
gsumunsnd.b
⊢ 𝐵 = ( Base ‘ 𝐺 )
gsumunsnd.p
⊢ + = ( +g ‘ 𝐺 )
gsumunsnd.g
⊢ ( 𝜑 → 𝐺 ∈ CMnd )
gsumunsnd.a
⊢ ( 𝜑 → 𝐴 ∈ Fin )
gsumunsnd.f
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝑋 ∈ 𝐵 )
gsumunsnd.m
⊢ ( 𝜑 → 𝑀 ∈ 𝑉 )
gsumunsnd.d
⊢ ( 𝜑 → ¬ 𝑀 ∈ 𝐴 )
gsumunsnd.y
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 )
gsumunsnd.s
⊢ ( ( 𝜑 ∧ 𝑘 = 𝑀 ) → 𝑋 = 𝑌 )
Assertion
gsumunsnd
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 ∪ { 𝑀 } ) ↦ 𝑋 ) ) = ( ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ) + 𝑌 ) )
Proof
Step
Hyp
Ref
Expression
1
gsumunsnd.b
⊢ 𝐵 = ( Base ‘ 𝐺 )
2
gsumunsnd.p
⊢ + = ( +g ‘ 𝐺 )
3
gsumunsnd.g
⊢ ( 𝜑 → 𝐺 ∈ CMnd )
4
gsumunsnd.a
⊢ ( 𝜑 → 𝐴 ∈ Fin )
5
gsumunsnd.f
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝑋 ∈ 𝐵 )
6
gsumunsnd.m
⊢ ( 𝜑 → 𝑀 ∈ 𝑉 )
7
gsumunsnd.d
⊢ ( 𝜑 → ¬ 𝑀 ∈ 𝐴 )
8
gsumunsnd.y
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 )
9
gsumunsnd.s
⊢ ( ( 𝜑 ∧ 𝑘 = 𝑀 ) → 𝑋 = 𝑌 )
10
nfcv
⊢ Ⅎ 𝑘 𝑌
11
1 2 3 4 5 6 7 8 9 10
gsumunsnfd
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 ∪ { 𝑀 } ) ↦ 𝑋 ) ) = ( ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ) + 𝑌 ) )