Metamath Proof Explorer


Theorem gsumunsnf

Description: Append an element to a finite group sum, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Mario Carneiro, 19-Dec-2014) (Revised by Thierry Arnoux, 28-Mar-2018) (Proof shortened by AV, 11-Dec-2019)

Ref Expression
Hypotheses gsumunsnf.0 𝑘 𝑌
gsumunsnf.b 𝐵 = ( Base ‘ 𝐺 )
gsumunsnf.p + = ( +g𝐺 )
gsumunsnf.g ( 𝜑𝐺 ∈ CMnd )
gsumunsnf.a ( 𝜑𝐴 ∈ Fin )
gsumunsnf.f ( ( 𝜑𝑘𝐴 ) → 𝑋𝐵 )
gsumunsnf.m ( 𝜑𝑀𝑉 )
gsumunsnf.d ( 𝜑 → ¬ 𝑀𝐴 )
gsumunsnf.y ( 𝜑𝑌𝐵 )
gsumunsnf.s ( 𝑘 = 𝑀𝑋 = 𝑌 )
Assertion gsumunsnf ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 ∪ { 𝑀 } ) ↦ 𝑋 ) ) = ( ( 𝐺 Σg ( 𝑘𝐴𝑋 ) ) + 𝑌 ) )

Proof

Step Hyp Ref Expression
1 gsumunsnf.0 𝑘 𝑌
2 gsumunsnf.b 𝐵 = ( Base ‘ 𝐺 )
3 gsumunsnf.p + = ( +g𝐺 )
4 gsumunsnf.g ( 𝜑𝐺 ∈ CMnd )
5 gsumunsnf.a ( 𝜑𝐴 ∈ Fin )
6 gsumunsnf.f ( ( 𝜑𝑘𝐴 ) → 𝑋𝐵 )
7 gsumunsnf.m ( 𝜑𝑀𝑉 )
8 gsumunsnf.d ( 𝜑 → ¬ 𝑀𝐴 )
9 gsumunsnf.y ( 𝜑𝑌𝐵 )
10 gsumunsnf.s ( 𝑘 = 𝑀𝑋 = 𝑌 )
11 10 adantl ( ( 𝜑𝑘 = 𝑀 ) → 𝑋 = 𝑌 )
12 2 3 4 5 6 7 8 9 11 1 gsumunsnfd ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 ∪ { 𝑀 } ) ↦ 𝑋 ) ) = ( ( 𝐺 Σg ( 𝑘𝐴𝑋 ) ) + 𝑌 ) )