| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gsumunsnd.b | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | gsumunsnd.p | ⊢  +   =  ( +g ‘ 𝐺 ) | 
						
							| 3 |  | gsumunsnd.g | ⊢ ( 𝜑  →  𝐺  ∈  CMnd ) | 
						
							| 4 |  | gsumunsnd.a | ⊢ ( 𝜑  →  𝐴  ∈  Fin ) | 
						
							| 5 |  | gsumunsnd.f | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  𝑋  ∈  𝐵 ) | 
						
							| 6 |  | gsumunsnd.m | ⊢ ( 𝜑  →  𝑀  ∈  𝑉 ) | 
						
							| 7 |  | gsumunsnd.d | ⊢ ( 𝜑  →  ¬  𝑀  ∈  𝐴 ) | 
						
							| 8 |  | gsumunsnd.y | ⊢ ( 𝜑  →  𝑌  ∈  𝐵 ) | 
						
							| 9 |  | gsumunsnd.s | ⊢ ( ( 𝜑  ∧  𝑘  =  𝑀 )  →  𝑋  =  𝑌 ) | 
						
							| 10 |  | gsumunsnfd.0 | ⊢ Ⅎ 𝑘 𝑌 | 
						
							| 11 |  | snfi | ⊢ { 𝑀 }  ∈  Fin | 
						
							| 12 |  | unfi | ⊢ ( ( 𝐴  ∈  Fin  ∧  { 𝑀 }  ∈  Fin )  →  ( 𝐴  ∪  { 𝑀 } )  ∈  Fin ) | 
						
							| 13 | 4 11 12 | sylancl | ⊢ ( 𝜑  →  ( 𝐴  ∪  { 𝑀 } )  ∈  Fin ) | 
						
							| 14 |  | elun | ⊢ ( 𝑘  ∈  ( 𝐴  ∪  { 𝑀 } )  ↔  ( 𝑘  ∈  𝐴  ∨  𝑘  ∈  { 𝑀 } ) ) | 
						
							| 15 |  | elsni | ⊢ ( 𝑘  ∈  { 𝑀 }  →  𝑘  =  𝑀 ) | 
						
							| 16 | 15 9 | sylan2 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  { 𝑀 } )  →  𝑋  =  𝑌 ) | 
						
							| 17 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  { 𝑀 } )  →  𝑌  ∈  𝐵 ) | 
						
							| 18 | 16 17 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  { 𝑀 } )  →  𝑋  ∈  𝐵 ) | 
						
							| 19 | 5 18 | jaodan | ⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  𝐴  ∨  𝑘  ∈  { 𝑀 } ) )  →  𝑋  ∈  𝐵 ) | 
						
							| 20 | 14 19 | sylan2b | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝐴  ∪  { 𝑀 } ) )  →  𝑋  ∈  𝐵 ) | 
						
							| 21 |  | disjsn | ⊢ ( ( 𝐴  ∩  { 𝑀 } )  =  ∅  ↔  ¬  𝑀  ∈  𝐴 ) | 
						
							| 22 | 7 21 | sylibr | ⊢ ( 𝜑  →  ( 𝐴  ∩  { 𝑀 } )  =  ∅ ) | 
						
							| 23 |  | eqidd | ⊢ ( 𝜑  →  ( 𝐴  ∪  { 𝑀 } )  =  ( 𝐴  ∪  { 𝑀 } ) ) | 
						
							| 24 | 1 2 3 13 20 22 23 | gsummptfidmsplit | ⊢ ( 𝜑  →  ( 𝐺  Σg  ( 𝑘  ∈  ( 𝐴  ∪  { 𝑀 } )  ↦  𝑋 ) )  =  ( ( 𝐺  Σg  ( 𝑘  ∈  𝐴  ↦  𝑋 ) )  +  ( 𝐺  Σg  ( 𝑘  ∈  { 𝑀 }  ↦  𝑋 ) ) ) ) | 
						
							| 25 |  | cmnmnd | ⊢ ( 𝐺  ∈  CMnd  →  𝐺  ∈  Mnd ) | 
						
							| 26 | 3 25 | syl | ⊢ ( 𝜑  →  𝐺  ∈  Mnd ) | 
						
							| 27 |  | nfv | ⊢ Ⅎ 𝑘 𝜑 | 
						
							| 28 | 1 26 6 8 9 27 10 | gsumsnfd | ⊢ ( 𝜑  →  ( 𝐺  Σg  ( 𝑘  ∈  { 𝑀 }  ↦  𝑋 ) )  =  𝑌 ) | 
						
							| 29 | 28 | oveq2d | ⊢ ( 𝜑  →  ( ( 𝐺  Σg  ( 𝑘  ∈  𝐴  ↦  𝑋 ) )  +  ( 𝐺  Σg  ( 𝑘  ∈  { 𝑀 }  ↦  𝑋 ) ) )  =  ( ( 𝐺  Σg  ( 𝑘  ∈  𝐴  ↦  𝑋 ) )  +  𝑌 ) ) | 
						
							| 30 | 24 29 | eqtrd | ⊢ ( 𝜑  →  ( 𝐺  Σg  ( 𝑘  ∈  ( 𝐴  ∪  { 𝑀 } )  ↦  𝑋 ) )  =  ( ( 𝐺  Σg  ( 𝑘  ∈  𝐴  ↦  𝑋 ) )  +  𝑌 ) ) |