Step |
Hyp |
Ref |
Expression |
1 |
|
gsumunsnd.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
gsumunsnd.p |
⊢ + = ( +g ‘ 𝐺 ) |
3 |
|
gsumunsnd.g |
⊢ ( 𝜑 → 𝐺 ∈ CMnd ) |
4 |
|
gsumunsnd.a |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
5 |
|
gsumunsnd.f |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝑋 ∈ 𝐵 ) |
6 |
|
gsumunsnd.m |
⊢ ( 𝜑 → 𝑀 ∈ 𝑉 ) |
7 |
|
gsumunsnd.d |
⊢ ( 𝜑 → ¬ 𝑀 ∈ 𝐴 ) |
8 |
|
gsumunsnd.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
9 |
|
gsumunsnd.s |
⊢ ( ( 𝜑 ∧ 𝑘 = 𝑀 ) → 𝑋 = 𝑌 ) |
10 |
|
gsumunsnfd.0 |
⊢ Ⅎ 𝑘 𝑌 |
11 |
|
snfi |
⊢ { 𝑀 } ∈ Fin |
12 |
|
unfi |
⊢ ( ( 𝐴 ∈ Fin ∧ { 𝑀 } ∈ Fin ) → ( 𝐴 ∪ { 𝑀 } ) ∈ Fin ) |
13 |
4 11 12
|
sylancl |
⊢ ( 𝜑 → ( 𝐴 ∪ { 𝑀 } ) ∈ Fin ) |
14 |
|
elun |
⊢ ( 𝑘 ∈ ( 𝐴 ∪ { 𝑀 } ) ↔ ( 𝑘 ∈ 𝐴 ∨ 𝑘 ∈ { 𝑀 } ) ) |
15 |
|
elsni |
⊢ ( 𝑘 ∈ { 𝑀 } → 𝑘 = 𝑀 ) |
16 |
15 9
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑀 } ) → 𝑋 = 𝑌 ) |
17 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑀 } ) → 𝑌 ∈ 𝐵 ) |
18 |
16 17
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑀 } ) → 𝑋 ∈ 𝐵 ) |
19 |
5 18
|
jaodan |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝐴 ∨ 𝑘 ∈ { 𝑀 } ) ) → 𝑋 ∈ 𝐵 ) |
20 |
14 19
|
sylan2b |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∪ { 𝑀 } ) ) → 𝑋 ∈ 𝐵 ) |
21 |
|
disjsn |
⊢ ( ( 𝐴 ∩ { 𝑀 } ) = ∅ ↔ ¬ 𝑀 ∈ 𝐴 ) |
22 |
7 21
|
sylibr |
⊢ ( 𝜑 → ( 𝐴 ∩ { 𝑀 } ) = ∅ ) |
23 |
|
eqidd |
⊢ ( 𝜑 → ( 𝐴 ∪ { 𝑀 } ) = ( 𝐴 ∪ { 𝑀 } ) ) |
24 |
1 2 3 13 20 22 23
|
gsummptfidmsplit |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 ∪ { 𝑀 } ) ↦ 𝑋 ) ) = ( ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ) + ( 𝐺 Σg ( 𝑘 ∈ { 𝑀 } ↦ 𝑋 ) ) ) ) |
25 |
|
cmnmnd |
⊢ ( 𝐺 ∈ CMnd → 𝐺 ∈ Mnd ) |
26 |
3 25
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ Mnd ) |
27 |
|
nfv |
⊢ Ⅎ 𝑘 𝜑 |
28 |
1 26 6 8 9 27 10
|
gsumsnfd |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ { 𝑀 } ↦ 𝑋 ) ) = 𝑌 ) |
29 |
28
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ) + ( 𝐺 Σg ( 𝑘 ∈ { 𝑀 } ↦ 𝑋 ) ) ) = ( ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ) + 𝑌 ) ) |
30 |
24 29
|
eqtrd |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 ∪ { 𝑀 } ) ↦ 𝑋 ) ) = ( ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ) + 𝑌 ) ) |