Step |
Hyp |
Ref |
Expression |
1 |
|
gsumval2.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
gsumval2.p |
⊢ + = ( +g ‘ 𝐺 ) |
3 |
|
gsumval2.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝑉 ) |
4 |
|
gsumval2.n |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
5 |
|
gsumval2.f |
⊢ ( 𝜑 → 𝐹 : ( 𝑀 ... 𝑁 ) ⟶ 𝐵 ) |
6 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
7 |
|
eqid |
⊢ { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) } = { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) } |
8 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ran 𝐹 ⊆ { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) } ) → 𝐺 ∈ 𝑉 ) |
9 |
|
ovexd |
⊢ ( ( 𝜑 ∧ ran 𝐹 ⊆ { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) } ) → ( 𝑀 ... 𝑁 ) ∈ V ) |
10 |
5
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn ( 𝑀 ... 𝑁 ) ) |
11 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ ran 𝐹 ⊆ { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) } ) → 𝐹 Fn ( 𝑀 ... 𝑁 ) ) |
12 |
|
simpr |
⊢ ( ( 𝜑 ∧ ran 𝐹 ⊆ { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) } ) → ran 𝐹 ⊆ { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) } ) |
13 |
|
df-f |
⊢ ( 𝐹 : ( 𝑀 ... 𝑁 ) ⟶ { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) } ↔ ( 𝐹 Fn ( 𝑀 ... 𝑁 ) ∧ ran 𝐹 ⊆ { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) } ) ) |
14 |
11 12 13
|
sylanbrc |
⊢ ( ( 𝜑 ∧ ran 𝐹 ⊆ { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) } ) → 𝐹 : ( 𝑀 ... 𝑁 ) ⟶ { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) } ) |
15 |
1 6 2 7 8 9 14
|
gsumval1 |
⊢ ( ( 𝜑 ∧ ran 𝐹 ⊆ { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) } ) → ( 𝐺 Σg 𝐹 ) = ( 0g ‘ 𝐺 ) ) |
16 |
|
simpl |
⊢ ( ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) → ( 𝑥 + 𝑦 ) = 𝑦 ) |
17 |
16
|
ralimi |
⊢ ( ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) → ∀ 𝑦 ∈ 𝐵 ( 𝑥 + 𝑦 ) = 𝑦 ) |
18 |
17
|
a1i |
⊢ ( 𝑥 ∈ 𝐵 → ( ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) → ∀ 𝑦 ∈ 𝐵 ( 𝑥 + 𝑦 ) = 𝑦 ) ) |
19 |
18
|
ss2rabi |
⊢ { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) } ⊆ { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( 𝑥 + 𝑦 ) = 𝑦 } |
20 |
|
fvex |
⊢ ( 0g ‘ 𝐺 ) ∈ V |
21 |
20
|
snid |
⊢ ( 0g ‘ 𝐺 ) ∈ { ( 0g ‘ 𝐺 ) } |
22 |
5
|
fdmd |
⊢ ( 𝜑 → dom 𝐹 = ( 𝑀 ... 𝑁 ) ) |
23 |
|
eluzfz1 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ( 𝑀 ... 𝑁 ) ) |
24 |
|
ne0i |
⊢ ( 𝑀 ∈ ( 𝑀 ... 𝑁 ) → ( 𝑀 ... 𝑁 ) ≠ ∅ ) |
25 |
4 23 24
|
3syl |
⊢ ( 𝜑 → ( 𝑀 ... 𝑁 ) ≠ ∅ ) |
26 |
22 25
|
eqnetrd |
⊢ ( 𝜑 → dom 𝐹 ≠ ∅ ) |
27 |
|
dm0rn0 |
⊢ ( dom 𝐹 = ∅ ↔ ran 𝐹 = ∅ ) |
28 |
27
|
necon3bii |
⊢ ( dom 𝐹 ≠ ∅ ↔ ran 𝐹 ≠ ∅ ) |
29 |
26 28
|
sylib |
⊢ ( 𝜑 → ran 𝐹 ≠ ∅ ) |
30 |
29
|
adantr |
⊢ ( ( 𝜑 ∧ ran 𝐹 ⊆ { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) } ) → ran 𝐹 ≠ ∅ ) |
31 |
|
ssn0 |
⊢ ( ( ran 𝐹 ⊆ { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) } ∧ ran 𝐹 ≠ ∅ ) → { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) } ≠ ∅ ) |
32 |
12 30 31
|
syl2anc |
⊢ ( ( 𝜑 ∧ ran 𝐹 ⊆ { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) } ) → { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) } ≠ ∅ ) |
33 |
32
|
neneqd |
⊢ ( ( 𝜑 ∧ ran 𝐹 ⊆ { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) } ) → ¬ { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) } = ∅ ) |
34 |
1 6 2 7
|
mgmidsssn0 |
⊢ ( 𝐺 ∈ 𝑉 → { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) } ⊆ { ( 0g ‘ 𝐺 ) } ) |
35 |
3 34
|
syl |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) } ⊆ { ( 0g ‘ 𝐺 ) } ) |
36 |
|
sssn |
⊢ ( { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) } ⊆ { ( 0g ‘ 𝐺 ) } ↔ ( { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) } = ∅ ∨ { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) } = { ( 0g ‘ 𝐺 ) } ) ) |
37 |
35 36
|
sylib |
⊢ ( 𝜑 → ( { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) } = ∅ ∨ { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) } = { ( 0g ‘ 𝐺 ) } ) ) |
38 |
37
|
orcanai |
⊢ ( ( 𝜑 ∧ ¬ { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) } = ∅ ) → { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) } = { ( 0g ‘ 𝐺 ) } ) |
39 |
33 38
|
syldan |
⊢ ( ( 𝜑 ∧ ran 𝐹 ⊆ { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) } ) → { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) } = { ( 0g ‘ 𝐺 ) } ) |
40 |
21 39
|
eleqtrrid |
⊢ ( ( 𝜑 ∧ ran 𝐹 ⊆ { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) } ) → ( 0g ‘ 𝐺 ) ∈ { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) } ) |
41 |
19 40
|
sselid |
⊢ ( ( 𝜑 ∧ ran 𝐹 ⊆ { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) } ) → ( 0g ‘ 𝐺 ) ∈ { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( 𝑥 + 𝑦 ) = 𝑦 } ) |
42 |
|
oveq1 |
⊢ ( 𝑥 = ( 0g ‘ 𝐺 ) → ( 𝑥 + 𝑦 ) = ( ( 0g ‘ 𝐺 ) + 𝑦 ) ) |
43 |
42
|
eqeq1d |
⊢ ( 𝑥 = ( 0g ‘ 𝐺 ) → ( ( 𝑥 + 𝑦 ) = 𝑦 ↔ ( ( 0g ‘ 𝐺 ) + 𝑦 ) = 𝑦 ) ) |
44 |
43
|
ralbidv |
⊢ ( 𝑥 = ( 0g ‘ 𝐺 ) → ( ∀ 𝑦 ∈ 𝐵 ( 𝑥 + 𝑦 ) = 𝑦 ↔ ∀ 𝑦 ∈ 𝐵 ( ( 0g ‘ 𝐺 ) + 𝑦 ) = 𝑦 ) ) |
45 |
44
|
elrab |
⊢ ( ( 0g ‘ 𝐺 ) ∈ { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( 𝑥 + 𝑦 ) = 𝑦 } ↔ ( ( 0g ‘ 𝐺 ) ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ( ( 0g ‘ 𝐺 ) + 𝑦 ) = 𝑦 ) ) |
46 |
|
oveq2 |
⊢ ( 𝑦 = ( 0g ‘ 𝐺 ) → ( ( 0g ‘ 𝐺 ) + 𝑦 ) = ( ( 0g ‘ 𝐺 ) + ( 0g ‘ 𝐺 ) ) ) |
47 |
|
id |
⊢ ( 𝑦 = ( 0g ‘ 𝐺 ) → 𝑦 = ( 0g ‘ 𝐺 ) ) |
48 |
46 47
|
eqeq12d |
⊢ ( 𝑦 = ( 0g ‘ 𝐺 ) → ( ( ( 0g ‘ 𝐺 ) + 𝑦 ) = 𝑦 ↔ ( ( 0g ‘ 𝐺 ) + ( 0g ‘ 𝐺 ) ) = ( 0g ‘ 𝐺 ) ) ) |
49 |
48
|
rspcva |
⊢ ( ( ( 0g ‘ 𝐺 ) ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ( ( 0g ‘ 𝐺 ) + 𝑦 ) = 𝑦 ) → ( ( 0g ‘ 𝐺 ) + ( 0g ‘ 𝐺 ) ) = ( 0g ‘ 𝐺 ) ) |
50 |
45 49
|
sylbi |
⊢ ( ( 0g ‘ 𝐺 ) ∈ { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( 𝑥 + 𝑦 ) = 𝑦 } → ( ( 0g ‘ 𝐺 ) + ( 0g ‘ 𝐺 ) ) = ( 0g ‘ 𝐺 ) ) |
51 |
41 50
|
syl |
⊢ ( ( 𝜑 ∧ ran 𝐹 ⊆ { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) } ) → ( ( 0g ‘ 𝐺 ) + ( 0g ‘ 𝐺 ) ) = ( 0g ‘ 𝐺 ) ) |
52 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ran 𝐹 ⊆ { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) } ) → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
53 |
35
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ran 𝐹 ⊆ { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) } ) ∧ 𝑧 ∈ ( 𝑀 ... 𝑁 ) ) → { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) } ⊆ { ( 0g ‘ 𝐺 ) } ) |
54 |
14
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ ran 𝐹 ⊆ { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) } ) ∧ 𝑧 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑧 ) ∈ { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) } ) |
55 |
53 54
|
sseldd |
⊢ ( ( ( 𝜑 ∧ ran 𝐹 ⊆ { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) } ) ∧ 𝑧 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑧 ) ∈ { ( 0g ‘ 𝐺 ) } ) |
56 |
|
elsni |
⊢ ( ( 𝐹 ‘ 𝑧 ) ∈ { ( 0g ‘ 𝐺 ) } → ( 𝐹 ‘ 𝑧 ) = ( 0g ‘ 𝐺 ) ) |
57 |
55 56
|
syl |
⊢ ( ( ( 𝜑 ∧ ran 𝐹 ⊆ { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) } ) ∧ 𝑧 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑧 ) = ( 0g ‘ 𝐺 ) ) |
58 |
51 52 57
|
seqid3 |
⊢ ( ( 𝜑 ∧ ran 𝐹 ⊆ { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) } ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) = ( 0g ‘ 𝐺 ) ) |
59 |
15 58
|
eqtr4d |
⊢ ( ( 𝜑 ∧ ran 𝐹 ⊆ { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) } ) → ( 𝐺 Σg 𝐹 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) |
60 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ran 𝐹 ⊆ { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) } ) → 𝐺 ∈ 𝑉 ) |
61 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ran 𝐹 ⊆ { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) } ) → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
62 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ran 𝐹 ⊆ { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) } ) → 𝐹 : ( 𝑀 ... 𝑁 ) ⟶ 𝐵 ) |
63 |
|
simpr |
⊢ ( ( 𝜑 ∧ ¬ ran 𝐹 ⊆ { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) } ) → ¬ ran 𝐹 ⊆ { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) } ) |
64 |
1 2 60 61 62 7 63
|
gsumval2a |
⊢ ( ( 𝜑 ∧ ¬ ran 𝐹 ⊆ { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) } ) → ( 𝐺 Σg 𝐹 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) |
65 |
59 64
|
pm2.61dan |
⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) |