| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gsumval3.b | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | gsumval3.0 | ⊢  0   =  ( 0g ‘ 𝐺 ) | 
						
							| 3 |  | gsumval3.p | ⊢  +   =  ( +g ‘ 𝐺 ) | 
						
							| 4 |  | gsumval3.z | ⊢ 𝑍  =  ( Cntz ‘ 𝐺 ) | 
						
							| 5 |  | gsumval3.g | ⊢ ( 𝜑  →  𝐺  ∈  Mnd ) | 
						
							| 6 |  | gsumval3.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑉 ) | 
						
							| 7 |  | gsumval3.f | ⊢ ( 𝜑  →  𝐹 : 𝐴 ⟶ 𝐵 ) | 
						
							| 8 |  | gsumval3.c | ⊢ ( 𝜑  →  ran  𝐹  ⊆  ( 𝑍 ‘ ran  𝐹 ) ) | 
						
							| 9 |  | gsumval3a.t | ⊢ ( 𝜑  →  𝑊  ∈  Fin ) | 
						
							| 10 |  | gsumval3a.n | ⊢ ( 𝜑  →  𝑊  ≠  ∅ ) | 
						
							| 11 |  | gsumval3a.w | ⊢ 𝑊  =  ( 𝐹  supp   0  ) | 
						
							| 12 |  | gsumval3a.i | ⊢ ( 𝜑  →  ¬  𝐴  ∈  ran  ... ) | 
						
							| 13 |  | eqid | ⊢ { 𝑧  ∈  𝐵  ∣  ∀ 𝑦  ∈  𝐵 ( ( 𝑧  +  𝑦 )  =  𝑦  ∧  ( 𝑦  +  𝑧 )  =  𝑦 ) }  =  { 𝑧  ∈  𝐵  ∣  ∀ 𝑦  ∈  𝐵 ( ( 𝑧  +  𝑦 )  =  𝑦  ∧  ( 𝑦  +  𝑧 )  =  𝑦 ) } | 
						
							| 14 | 11 | a1i | ⊢ ( 𝜑  →  𝑊  =  ( 𝐹  supp   0  ) ) | 
						
							| 15 | 7 6 | fexd | ⊢ ( 𝜑  →  𝐹  ∈  V ) | 
						
							| 16 | 2 | fvexi | ⊢  0   ∈  V | 
						
							| 17 |  | suppimacnv | ⊢ ( ( 𝐹  ∈  V  ∧   0   ∈  V )  →  ( 𝐹  supp   0  )  =  ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) | 
						
							| 18 | 15 16 17 | sylancl | ⊢ ( 𝜑  →  ( 𝐹  supp   0  )  =  ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) | 
						
							| 19 | 1 2 3 13 | gsumvallem2 | ⊢ ( 𝐺  ∈  Mnd  →  { 𝑧  ∈  𝐵  ∣  ∀ 𝑦  ∈  𝐵 ( ( 𝑧  +  𝑦 )  =  𝑦  ∧  ( 𝑦  +  𝑧 )  =  𝑦 ) }  =  {  0  } ) | 
						
							| 20 | 5 19 | syl | ⊢ ( 𝜑  →  { 𝑧  ∈  𝐵  ∣  ∀ 𝑦  ∈  𝐵 ( ( 𝑧  +  𝑦 )  =  𝑦  ∧  ( 𝑦  +  𝑧 )  =  𝑦 ) }  =  {  0  } ) | 
						
							| 21 | 20 | eqcomd | ⊢ ( 𝜑  →  {  0  }  =  { 𝑧  ∈  𝐵  ∣  ∀ 𝑦  ∈  𝐵 ( ( 𝑧  +  𝑦 )  =  𝑦  ∧  ( 𝑦  +  𝑧 )  =  𝑦 ) } ) | 
						
							| 22 | 21 | difeq2d | ⊢ ( 𝜑  →  ( V  ∖  {  0  } )  =  ( V  ∖  { 𝑧  ∈  𝐵  ∣  ∀ 𝑦  ∈  𝐵 ( ( 𝑧  +  𝑦 )  =  𝑦  ∧  ( 𝑦  +  𝑧 )  =  𝑦 ) } ) ) | 
						
							| 23 | 22 | imaeq2d | ⊢ ( 𝜑  →  ( ◡ 𝐹  “  ( V  ∖  {  0  } ) )  =  ( ◡ 𝐹  “  ( V  ∖  { 𝑧  ∈  𝐵  ∣  ∀ 𝑦  ∈  𝐵 ( ( 𝑧  +  𝑦 )  =  𝑦  ∧  ( 𝑦  +  𝑧 )  =  𝑦 ) } ) ) ) | 
						
							| 24 | 14 18 23 | 3eqtrd | ⊢ ( 𝜑  →  𝑊  =  ( ◡ 𝐹  “  ( V  ∖  { 𝑧  ∈  𝐵  ∣  ∀ 𝑦  ∈  𝐵 ( ( 𝑧  +  𝑦 )  =  𝑦  ∧  ( 𝑦  +  𝑧 )  =  𝑦 ) } ) ) ) | 
						
							| 25 | 1 2 3 13 24 5 6 7 | gsumval | ⊢ ( 𝜑  →  ( 𝐺  Σg  𝐹 )  =  if ( ran  𝐹  ⊆  { 𝑧  ∈  𝐵  ∣  ∀ 𝑦  ∈  𝐵 ( ( 𝑧  +  𝑦 )  =  𝑦  ∧  ( 𝑦  +  𝑧 )  =  𝑦 ) } ,   0  ,  if ( 𝐴  ∈  ran  ... ,  ( ℩ 𝑥 ∃ 𝑚 ∃ 𝑛  ∈  ( ℤ≥ ‘ 𝑚 ) ( 𝐴  =  ( 𝑚 ... 𝑛 )  ∧  𝑥  =  ( seq 𝑚 (  +  ,  𝐹 ) ‘ 𝑛 ) ) ) ,  ( ℩ 𝑥 ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊  ∧  𝑥  =  ( seq 1 (  +  ,  ( 𝐹  ∘  𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ) ) ) ) | 
						
							| 26 | 20 | sseq2d | ⊢ ( 𝜑  →  ( ran  𝐹  ⊆  { 𝑧  ∈  𝐵  ∣  ∀ 𝑦  ∈  𝐵 ( ( 𝑧  +  𝑦 )  =  𝑦  ∧  ( 𝑦  +  𝑧 )  =  𝑦 ) }  ↔  ran  𝐹  ⊆  {  0  } ) ) | 
						
							| 27 | 11 | a1i | ⊢ ( ( 𝜑  ∧  ran  𝐹  ⊆  {  0  } )  →  𝑊  =  ( 𝐹  supp   0  ) ) | 
						
							| 28 | 7 6 | jca | ⊢ ( 𝜑  →  ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐴  ∈  𝑉 ) ) | 
						
							| 29 | 28 | adantr | ⊢ ( ( 𝜑  ∧  ran  𝐹  ⊆  {  0  } )  →  ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐴  ∈  𝑉 ) ) | 
						
							| 30 |  | fex | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝐴  ∈  𝑉 )  →  𝐹  ∈  V ) | 
						
							| 31 | 29 30 | syl | ⊢ ( ( 𝜑  ∧  ran  𝐹  ⊆  {  0  } )  →  𝐹  ∈  V ) | 
						
							| 32 | 31 16 17 | sylancl | ⊢ ( ( 𝜑  ∧  ran  𝐹  ⊆  {  0  } )  →  ( 𝐹  supp   0  )  =  ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) | 
						
							| 33 | 7 | ffnd | ⊢ ( 𝜑  →  𝐹  Fn  𝐴 ) | 
						
							| 34 | 33 | adantr | ⊢ ( ( 𝜑  ∧  ran  𝐹  ⊆  {  0  } )  →  𝐹  Fn  𝐴 ) | 
						
							| 35 |  | simpr | ⊢ ( ( 𝜑  ∧  ran  𝐹  ⊆  {  0  } )  →  ran  𝐹  ⊆  {  0  } ) | 
						
							| 36 |  | df-f | ⊢ ( 𝐹 : 𝐴 ⟶ {  0  }  ↔  ( 𝐹  Fn  𝐴  ∧  ran  𝐹  ⊆  {  0  } ) ) | 
						
							| 37 | 34 35 36 | sylanbrc | ⊢ ( ( 𝜑  ∧  ran  𝐹  ⊆  {  0  } )  →  𝐹 : 𝐴 ⟶ {  0  } ) | 
						
							| 38 |  | disjdif | ⊢ ( {  0  }  ∩  ( V  ∖  {  0  } ) )  =  ∅ | 
						
							| 39 |  | fimacnvdisj | ⊢ ( ( 𝐹 : 𝐴 ⟶ {  0  }  ∧  ( {  0  }  ∩  ( V  ∖  {  0  } ) )  =  ∅ )  →  ( ◡ 𝐹  “  ( V  ∖  {  0  } ) )  =  ∅ ) | 
						
							| 40 | 37 38 39 | sylancl | ⊢ ( ( 𝜑  ∧  ran  𝐹  ⊆  {  0  } )  →  ( ◡ 𝐹  “  ( V  ∖  {  0  } ) )  =  ∅ ) | 
						
							| 41 | 27 32 40 | 3eqtrd | ⊢ ( ( 𝜑  ∧  ran  𝐹  ⊆  {  0  } )  →  𝑊  =  ∅ ) | 
						
							| 42 | 41 | ex | ⊢ ( 𝜑  →  ( ran  𝐹  ⊆  {  0  }  →  𝑊  =  ∅ ) ) | 
						
							| 43 | 26 42 | sylbid | ⊢ ( 𝜑  →  ( ran  𝐹  ⊆  { 𝑧  ∈  𝐵  ∣  ∀ 𝑦  ∈  𝐵 ( ( 𝑧  +  𝑦 )  =  𝑦  ∧  ( 𝑦  +  𝑧 )  =  𝑦 ) }  →  𝑊  =  ∅ ) ) | 
						
							| 44 | 43 | necon3ad | ⊢ ( 𝜑  →  ( 𝑊  ≠  ∅  →  ¬  ran  𝐹  ⊆  { 𝑧  ∈  𝐵  ∣  ∀ 𝑦  ∈  𝐵 ( ( 𝑧  +  𝑦 )  =  𝑦  ∧  ( 𝑦  +  𝑧 )  =  𝑦 ) } ) ) | 
						
							| 45 | 10 44 | mpd | ⊢ ( 𝜑  →  ¬  ran  𝐹  ⊆  { 𝑧  ∈  𝐵  ∣  ∀ 𝑦  ∈  𝐵 ( ( 𝑧  +  𝑦 )  =  𝑦  ∧  ( 𝑦  +  𝑧 )  =  𝑦 ) } ) | 
						
							| 46 | 45 | iffalsed | ⊢ ( 𝜑  →  if ( ran  𝐹  ⊆  { 𝑧  ∈  𝐵  ∣  ∀ 𝑦  ∈  𝐵 ( ( 𝑧  +  𝑦 )  =  𝑦  ∧  ( 𝑦  +  𝑧 )  =  𝑦 ) } ,   0  ,  if ( 𝐴  ∈  ran  ... ,  ( ℩ 𝑥 ∃ 𝑚 ∃ 𝑛  ∈  ( ℤ≥ ‘ 𝑚 ) ( 𝐴  =  ( 𝑚 ... 𝑛 )  ∧  𝑥  =  ( seq 𝑚 (  +  ,  𝐹 ) ‘ 𝑛 ) ) ) ,  ( ℩ 𝑥 ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊  ∧  𝑥  =  ( seq 1 (  +  ,  ( 𝐹  ∘  𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ) ) )  =  if ( 𝐴  ∈  ran  ... ,  ( ℩ 𝑥 ∃ 𝑚 ∃ 𝑛  ∈  ( ℤ≥ ‘ 𝑚 ) ( 𝐴  =  ( 𝑚 ... 𝑛 )  ∧  𝑥  =  ( seq 𝑚 (  +  ,  𝐹 ) ‘ 𝑛 ) ) ) ,  ( ℩ 𝑥 ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊  ∧  𝑥  =  ( seq 1 (  +  ,  ( 𝐹  ∘  𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ) ) ) | 
						
							| 47 | 12 | iffalsed | ⊢ ( 𝜑  →  if ( 𝐴  ∈  ran  ... ,  ( ℩ 𝑥 ∃ 𝑚 ∃ 𝑛  ∈  ( ℤ≥ ‘ 𝑚 ) ( 𝐴  =  ( 𝑚 ... 𝑛 )  ∧  𝑥  =  ( seq 𝑚 (  +  ,  𝐹 ) ‘ 𝑛 ) ) ) ,  ( ℩ 𝑥 ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊  ∧  𝑥  =  ( seq 1 (  +  ,  ( 𝐹  ∘  𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ) )  =  ( ℩ 𝑥 ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊  ∧  𝑥  =  ( seq 1 (  +  ,  ( 𝐹  ∘  𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ) ) | 
						
							| 48 | 25 46 47 | 3eqtrd | ⊢ ( 𝜑  →  ( 𝐺  Σg  𝐹 )  =  ( ℩ 𝑥 ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊  ∧  𝑥  =  ( seq 1 (  +  ,  ( 𝐹  ∘  𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ) ) |