| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gsumval3.b | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | gsumval3.0 | ⊢  0   =  ( 0g ‘ 𝐺 ) | 
						
							| 3 |  | gsumval3.p | ⊢  +   =  ( +g ‘ 𝐺 ) | 
						
							| 4 |  | gsumval3.z | ⊢ 𝑍  =  ( Cntz ‘ 𝐺 ) | 
						
							| 5 |  | gsumval3.g | ⊢ ( 𝜑  →  𝐺  ∈  Mnd ) | 
						
							| 6 |  | gsumval3.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑉 ) | 
						
							| 7 |  | gsumval3.f | ⊢ ( 𝜑  →  𝐹 : 𝐴 ⟶ 𝐵 ) | 
						
							| 8 |  | gsumval3.c | ⊢ ( 𝜑  →  ran  𝐹  ⊆  ( 𝑍 ‘ ran  𝐹 ) ) | 
						
							| 9 |  | gsumval3a.t | ⊢ ( 𝜑  →  𝑊  ∈  Fin ) | 
						
							| 10 |  | gsumval3a.n | ⊢ ( 𝜑  →  𝑊  ≠  ∅ ) | 
						
							| 11 |  | gsumval3a.s | ⊢ ( 𝜑  →  𝑊  ⊆  𝐴 ) | 
						
							| 12 | 10 | neneqd | ⊢ ( 𝜑  →  ¬  𝑊  =  ∅ ) | 
						
							| 13 |  | fz1f1o | ⊢ ( 𝑊  ∈  Fin  →  ( 𝑊  =  ∅  ∨  ( ( ♯ ‘ 𝑊 )  ∈  ℕ  ∧  ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) ) | 
						
							| 14 | 9 13 | syl | ⊢ ( 𝜑  →  ( 𝑊  =  ∅  ∨  ( ( ♯ ‘ 𝑊 )  ∈  ℕ  ∧  ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) ) | 
						
							| 15 | 14 | ord | ⊢ ( 𝜑  →  ( ¬  𝑊  =  ∅  →  ( ( ♯ ‘ 𝑊 )  ∈  ℕ  ∧  ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) ) | 
						
							| 16 | 12 15 | mpd | ⊢ ( 𝜑  →  ( ( ♯ ‘ 𝑊 )  ∈  ℕ  ∧  ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) | 
						
							| 17 | 16 | simprd | ⊢ ( 𝜑  →  ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) | 
						
							| 18 |  | excom | ⊢ ( ∃ 𝑥 ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊  ∧  𝑥  =  ( seq 1 (  +  ,  ( 𝐹  ∘  𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) )  ↔  ∃ 𝑓 ∃ 𝑥 ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊  ∧  𝑥  =  ( seq 1 (  +  ,  ( 𝐹  ∘  𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 19 |  | exancom | ⊢ ( ∃ 𝑥 ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊  ∧  𝑥  =  ( seq 1 (  +  ,  ( 𝐹  ∘  𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) )  ↔  ∃ 𝑥 ( 𝑥  =  ( seq 1 (  +  ,  ( 𝐹  ∘  𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) )  ∧  𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) | 
						
							| 20 |  | fvex | ⊢ ( seq 1 (  +  ,  ( 𝐹  ∘  𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) )  ∈  V | 
						
							| 21 |  | biidd | ⊢ ( 𝑥  =  ( seq 1 (  +  ,  ( 𝐹  ∘  𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) )  →  ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊  ↔  𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) | 
						
							| 22 | 20 21 | ceqsexv | ⊢ ( ∃ 𝑥 ( 𝑥  =  ( seq 1 (  +  ,  ( 𝐹  ∘  𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) )  ∧  𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 )  ↔  𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) | 
						
							| 23 | 19 22 | bitri | ⊢ ( ∃ 𝑥 ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊  ∧  𝑥  =  ( seq 1 (  +  ,  ( 𝐹  ∘  𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) )  ↔  𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) | 
						
							| 24 | 23 | exbii | ⊢ ( ∃ 𝑓 ∃ 𝑥 ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊  ∧  𝑥  =  ( seq 1 (  +  ,  ( 𝐹  ∘  𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) )  ↔  ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) | 
						
							| 25 | 18 24 | bitri | ⊢ ( ∃ 𝑥 ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊  ∧  𝑥  =  ( seq 1 (  +  ,  ( 𝐹  ∘  𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) )  ↔  ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) | 
						
							| 26 | 17 25 | sylibr | ⊢ ( 𝜑  →  ∃ 𝑥 ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊  ∧  𝑥  =  ( seq 1 (  +  ,  ( 𝐹  ∘  𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 27 |  | exdistrv | ⊢ ( ∃ 𝑓 ∃ 𝑔 ( ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊  ∧  𝑥  =  ( seq 1 (  +  ,  ( 𝐹  ∘  𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) )  ∧  ( 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊  ∧  𝑦  =  ( seq 1 (  +  ,  ( 𝐹  ∘  𝑔 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) )  ↔  ( ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊  ∧  𝑥  =  ( seq 1 (  +  ,  ( 𝐹  ∘  𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) )  ∧  ∃ 𝑔 ( 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊  ∧  𝑦  =  ( seq 1 (  +  ,  ( 𝐹  ∘  𝑔 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ) ) | 
						
							| 28 |  | an4 | ⊢ ( ( ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊  ∧  𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 )  ∧  ( 𝑥  =  ( seq 1 (  +  ,  ( 𝐹  ∘  𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) )  ∧  𝑦  =  ( seq 1 (  +  ,  ( 𝐹  ∘  𝑔 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) )  ↔  ( ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊  ∧  𝑥  =  ( seq 1 (  +  ,  ( 𝐹  ∘  𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) )  ∧  ( 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊  ∧  𝑦  =  ( seq 1 (  +  ,  ( 𝐹  ∘  𝑔 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ) ) | 
						
							| 29 | 5 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊  ∧  𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) )  →  𝐺  ∈  Mnd ) | 
						
							| 30 | 1 3 | mndcl | ⊢ ( ( 𝐺  ∈  Mnd  ∧  𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  →  ( 𝑥  +  𝑦 )  ∈  𝐵 ) | 
						
							| 31 | 30 | 3expb | ⊢ ( ( 𝐺  ∈  Mnd  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑥  +  𝑦 )  ∈  𝐵 ) | 
						
							| 32 | 29 31 | sylan | ⊢ ( ( ( 𝜑  ∧  ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊  ∧  𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑥  +  𝑦 )  ∈  𝐵 ) | 
						
							| 33 | 8 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊  ∧  𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) )  →  ran  𝐹  ⊆  ( 𝑍 ‘ ran  𝐹 ) ) | 
						
							| 34 | 33 | sselda | ⊢ ( ( ( 𝜑  ∧  ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊  ∧  𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) )  ∧  𝑥  ∈  ran  𝐹 )  →  𝑥  ∈  ( 𝑍 ‘ ran  𝐹 ) ) | 
						
							| 35 | 34 | adantrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊  ∧  𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) )  ∧  ( 𝑥  ∈  ran  𝐹  ∧  𝑦  ∈  ran  𝐹 ) )  →  𝑥  ∈  ( 𝑍 ‘ ran  𝐹 ) ) | 
						
							| 36 |  | simprr | ⊢ ( ( ( 𝜑  ∧  ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊  ∧  𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) )  ∧  ( 𝑥  ∈  ran  𝐹  ∧  𝑦  ∈  ran  𝐹 ) )  →  𝑦  ∈  ran  𝐹 ) | 
						
							| 37 | 3 4 | cntzi | ⊢ ( ( 𝑥  ∈  ( 𝑍 ‘ ran  𝐹 )  ∧  𝑦  ∈  ran  𝐹 )  →  ( 𝑥  +  𝑦 )  =  ( 𝑦  +  𝑥 ) ) | 
						
							| 38 | 35 36 37 | syl2anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊  ∧  𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) )  ∧  ( 𝑥  ∈  ran  𝐹  ∧  𝑦  ∈  ran  𝐹 ) )  →  ( 𝑥  +  𝑦 )  =  ( 𝑦  +  𝑥 ) ) | 
						
							| 39 | 1 3 | mndass | ⊢ ( ( 𝐺  ∈  Mnd  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  ( ( 𝑥  +  𝑦 )  +  𝑧 )  =  ( 𝑥  +  ( 𝑦  +  𝑧 ) ) ) | 
						
							| 40 | 29 39 | sylan | ⊢ ( ( ( 𝜑  ∧  ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊  ∧  𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  ( ( 𝑥  +  𝑦 )  +  𝑧 )  =  ( 𝑥  +  ( 𝑦  +  𝑧 ) ) ) | 
						
							| 41 | 16 | simpld | ⊢ ( 𝜑  →  ( ♯ ‘ 𝑊 )  ∈  ℕ ) | 
						
							| 42 | 41 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊  ∧  𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) )  →  ( ♯ ‘ 𝑊 )  ∈  ℕ ) | 
						
							| 43 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 44 | 42 43 | eleqtrdi | ⊢ ( ( 𝜑  ∧  ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊  ∧  𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) )  →  ( ♯ ‘ 𝑊 )  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 45 | 7 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊  ∧  𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) )  →  𝐹 : 𝐴 ⟶ 𝐵 ) | 
						
							| 46 | 45 | frnd | ⊢ ( ( 𝜑  ∧  ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊  ∧  𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) )  →  ran  𝐹  ⊆  𝐵 ) | 
						
							| 47 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊  ∧  𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) )  →  𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) | 
						
							| 48 |  | f1ocnv | ⊢ ( 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊  →  ◡ 𝑔 : 𝑊 –1-1-onto→ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 49 | 47 48 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊  ∧  𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) )  →  ◡ 𝑔 : 𝑊 –1-1-onto→ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 50 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊  ∧  𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) )  →  𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) | 
						
							| 51 |  | f1oco | ⊢ ( ( ◡ 𝑔 : 𝑊 –1-1-onto→ ( 1 ... ( ♯ ‘ 𝑊 ) )  ∧  𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 )  →  ( ◡ 𝑔  ∘  𝑓 ) : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 52 | 49 50 51 | syl2anc | ⊢ ( ( 𝜑  ∧  ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊  ∧  𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) )  →  ( ◡ 𝑔  ∘  𝑓 ) : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 53 |  | f1of | ⊢ ( 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊  →  𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) ⟶ 𝑊 ) | 
						
							| 54 | 47 53 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊  ∧  𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) )  →  𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) ⟶ 𝑊 ) | 
						
							| 55 |  | fvco3 | ⊢ ( ( 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) ⟶ 𝑊  ∧  𝑥  ∈  ( 1 ... ( ♯ ‘ 𝑊 ) ) )  →  ( ( 𝐹  ∘  𝑔 ) ‘ 𝑥 )  =  ( 𝐹 ‘ ( 𝑔 ‘ 𝑥 ) ) ) | 
						
							| 56 | 54 55 | sylan | ⊢ ( ( ( 𝜑  ∧  ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊  ∧  𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) )  ∧  𝑥  ∈  ( 1 ... ( ♯ ‘ 𝑊 ) ) )  →  ( ( 𝐹  ∘  𝑔 ) ‘ 𝑥 )  =  ( 𝐹 ‘ ( 𝑔 ‘ 𝑥 ) ) ) | 
						
							| 57 | 45 | ffnd | ⊢ ( ( 𝜑  ∧  ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊  ∧  𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) )  →  𝐹  Fn  𝐴 ) | 
						
							| 58 | 11 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊  ∧  𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) )  →  𝑊  ⊆  𝐴 ) | 
						
							| 59 | 54 58 | fssd | ⊢ ( ( 𝜑  ∧  ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊  ∧  𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) )  →  𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) ⟶ 𝐴 ) | 
						
							| 60 | 59 | ffvelcdmda | ⊢ ( ( ( 𝜑  ∧  ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊  ∧  𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) )  ∧  𝑥  ∈  ( 1 ... ( ♯ ‘ 𝑊 ) ) )  →  ( 𝑔 ‘ 𝑥 )  ∈  𝐴 ) | 
						
							| 61 |  | fnfvelrn | ⊢ ( ( 𝐹  Fn  𝐴  ∧  ( 𝑔 ‘ 𝑥 )  ∈  𝐴 )  →  ( 𝐹 ‘ ( 𝑔 ‘ 𝑥 ) )  ∈  ran  𝐹 ) | 
						
							| 62 | 57 60 61 | syl2an2r | ⊢ ( ( ( 𝜑  ∧  ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊  ∧  𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) )  ∧  𝑥  ∈  ( 1 ... ( ♯ ‘ 𝑊 ) ) )  →  ( 𝐹 ‘ ( 𝑔 ‘ 𝑥 ) )  ∈  ran  𝐹 ) | 
						
							| 63 | 56 62 | eqeltrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊  ∧  𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) )  ∧  𝑥  ∈  ( 1 ... ( ♯ ‘ 𝑊 ) ) )  →  ( ( 𝐹  ∘  𝑔 ) ‘ 𝑥 )  ∈  ran  𝐹 ) | 
						
							| 64 |  | f1of | ⊢ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊  →  𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) ⟶ 𝑊 ) | 
						
							| 65 | 50 64 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊  ∧  𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) )  →  𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) ⟶ 𝑊 ) | 
						
							| 66 |  | fvco3 | ⊢ ( ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) ⟶ 𝑊  ∧  𝑘  ∈  ( 1 ... ( ♯ ‘ 𝑊 ) ) )  →  ( ( ◡ 𝑔  ∘  𝑓 ) ‘ 𝑘 )  =  ( ◡ 𝑔 ‘ ( 𝑓 ‘ 𝑘 ) ) ) | 
						
							| 67 | 65 66 | sylan | ⊢ ( ( ( 𝜑  ∧  ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊  ∧  𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) )  ∧  𝑘  ∈  ( 1 ... ( ♯ ‘ 𝑊 ) ) )  →  ( ( ◡ 𝑔  ∘  𝑓 ) ‘ 𝑘 )  =  ( ◡ 𝑔 ‘ ( 𝑓 ‘ 𝑘 ) ) ) | 
						
							| 68 | 67 | fveq2d | ⊢ ( ( ( 𝜑  ∧  ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊  ∧  𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) )  ∧  𝑘  ∈  ( 1 ... ( ♯ ‘ 𝑊 ) ) )  →  ( 𝑔 ‘ ( ( ◡ 𝑔  ∘  𝑓 ) ‘ 𝑘 ) )  =  ( 𝑔 ‘ ( ◡ 𝑔 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) | 
						
							| 69 | 65 | ffvelcdmda | ⊢ ( ( ( 𝜑  ∧  ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊  ∧  𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) )  ∧  𝑘  ∈  ( 1 ... ( ♯ ‘ 𝑊 ) ) )  →  ( 𝑓 ‘ 𝑘 )  ∈  𝑊 ) | 
						
							| 70 |  | f1ocnvfv2 | ⊢ ( ( 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊  ∧  ( 𝑓 ‘ 𝑘 )  ∈  𝑊 )  →  ( 𝑔 ‘ ( ◡ 𝑔 ‘ ( 𝑓 ‘ 𝑘 ) ) )  =  ( 𝑓 ‘ 𝑘 ) ) | 
						
							| 71 | 47 69 70 | syl2an2r | ⊢ ( ( ( 𝜑  ∧  ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊  ∧  𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) )  ∧  𝑘  ∈  ( 1 ... ( ♯ ‘ 𝑊 ) ) )  →  ( 𝑔 ‘ ( ◡ 𝑔 ‘ ( 𝑓 ‘ 𝑘 ) ) )  =  ( 𝑓 ‘ 𝑘 ) ) | 
						
							| 72 | 68 71 | eqtr2d | ⊢ ( ( ( 𝜑  ∧  ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊  ∧  𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) )  ∧  𝑘  ∈  ( 1 ... ( ♯ ‘ 𝑊 ) ) )  →  ( 𝑓 ‘ 𝑘 )  =  ( 𝑔 ‘ ( ( ◡ 𝑔  ∘  𝑓 ) ‘ 𝑘 ) ) ) | 
						
							| 73 | 72 | fveq2d | ⊢ ( ( ( 𝜑  ∧  ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊  ∧  𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) )  ∧  𝑘  ∈  ( 1 ... ( ♯ ‘ 𝑊 ) ) )  →  ( 𝐹 ‘ ( 𝑓 ‘ 𝑘 ) )  =  ( 𝐹 ‘ ( 𝑔 ‘ ( ( ◡ 𝑔  ∘  𝑓 ) ‘ 𝑘 ) ) ) ) | 
						
							| 74 |  | fvco3 | ⊢ ( ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) ⟶ 𝑊  ∧  𝑘  ∈  ( 1 ... ( ♯ ‘ 𝑊 ) ) )  →  ( ( 𝐹  ∘  𝑓 ) ‘ 𝑘 )  =  ( 𝐹 ‘ ( 𝑓 ‘ 𝑘 ) ) ) | 
						
							| 75 | 65 74 | sylan | ⊢ ( ( ( 𝜑  ∧  ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊  ∧  𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) )  ∧  𝑘  ∈  ( 1 ... ( ♯ ‘ 𝑊 ) ) )  →  ( ( 𝐹  ∘  𝑓 ) ‘ 𝑘 )  =  ( 𝐹 ‘ ( 𝑓 ‘ 𝑘 ) ) ) | 
						
							| 76 |  | f1of | ⊢ ( ( ◡ 𝑔  ∘  𝑓 ) : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ ( 1 ... ( ♯ ‘ 𝑊 ) )  →  ( ◡ 𝑔  ∘  𝑓 ) : ( 1 ... ( ♯ ‘ 𝑊 ) ) ⟶ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 77 | 52 76 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊  ∧  𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) )  →  ( ◡ 𝑔  ∘  𝑓 ) : ( 1 ... ( ♯ ‘ 𝑊 ) ) ⟶ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 78 | 77 | ffvelcdmda | ⊢ ( ( ( 𝜑  ∧  ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊  ∧  𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) )  ∧  𝑘  ∈  ( 1 ... ( ♯ ‘ 𝑊 ) ) )  →  ( ( ◡ 𝑔  ∘  𝑓 ) ‘ 𝑘 )  ∈  ( 1 ... ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 79 |  | fvco3 | ⊢ ( ( 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) ⟶ 𝐴  ∧  ( ( ◡ 𝑔  ∘  𝑓 ) ‘ 𝑘 )  ∈  ( 1 ... ( ♯ ‘ 𝑊 ) ) )  →  ( ( 𝐹  ∘  𝑔 ) ‘ ( ( ◡ 𝑔  ∘  𝑓 ) ‘ 𝑘 ) )  =  ( 𝐹 ‘ ( 𝑔 ‘ ( ( ◡ 𝑔  ∘  𝑓 ) ‘ 𝑘 ) ) ) ) | 
						
							| 80 | 59 78 79 | syl2an2r | ⊢ ( ( ( 𝜑  ∧  ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊  ∧  𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) )  ∧  𝑘  ∈  ( 1 ... ( ♯ ‘ 𝑊 ) ) )  →  ( ( 𝐹  ∘  𝑔 ) ‘ ( ( ◡ 𝑔  ∘  𝑓 ) ‘ 𝑘 ) )  =  ( 𝐹 ‘ ( 𝑔 ‘ ( ( ◡ 𝑔  ∘  𝑓 ) ‘ 𝑘 ) ) ) ) | 
						
							| 81 | 73 75 80 | 3eqtr4d | ⊢ ( ( ( 𝜑  ∧  ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊  ∧  𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) )  ∧  𝑘  ∈  ( 1 ... ( ♯ ‘ 𝑊 ) ) )  →  ( ( 𝐹  ∘  𝑓 ) ‘ 𝑘 )  =  ( ( 𝐹  ∘  𝑔 ) ‘ ( ( ◡ 𝑔  ∘  𝑓 ) ‘ 𝑘 ) ) ) | 
						
							| 82 | 32 38 40 44 46 52 63 81 | seqf1o | ⊢ ( ( 𝜑  ∧  ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊  ∧  𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) )  →  ( seq 1 (  +  ,  ( 𝐹  ∘  𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) )  =  ( seq 1 (  +  ,  ( 𝐹  ∘  𝑔 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 83 |  | eqeq12 | ⊢ ( ( 𝑥  =  ( seq 1 (  +  ,  ( 𝐹  ∘  𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) )  ∧  𝑦  =  ( seq 1 (  +  ,  ( 𝐹  ∘  𝑔 ) ) ‘ ( ♯ ‘ 𝑊 ) ) )  →  ( 𝑥  =  𝑦  ↔  ( seq 1 (  +  ,  ( 𝐹  ∘  𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) )  =  ( seq 1 (  +  ,  ( 𝐹  ∘  𝑔 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 84 | 82 83 | syl5ibrcom | ⊢ ( ( 𝜑  ∧  ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊  ∧  𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) )  →  ( ( 𝑥  =  ( seq 1 (  +  ,  ( 𝐹  ∘  𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) )  ∧  𝑦  =  ( seq 1 (  +  ,  ( 𝐹  ∘  𝑔 ) ) ‘ ( ♯ ‘ 𝑊 ) ) )  →  𝑥  =  𝑦 ) ) | 
						
							| 85 | 84 | expimpd | ⊢ ( 𝜑  →  ( ( ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊  ∧  𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 )  ∧  ( 𝑥  =  ( seq 1 (  +  ,  ( 𝐹  ∘  𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) )  ∧  𝑦  =  ( seq 1 (  +  ,  ( 𝐹  ∘  𝑔 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) )  →  𝑥  =  𝑦 ) ) | 
						
							| 86 | 28 85 | biimtrrid | ⊢ ( 𝜑  →  ( ( ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊  ∧  𝑥  =  ( seq 1 (  +  ,  ( 𝐹  ∘  𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) )  ∧  ( 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊  ∧  𝑦  =  ( seq 1 (  +  ,  ( 𝐹  ∘  𝑔 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) )  →  𝑥  =  𝑦 ) ) | 
						
							| 87 | 86 | exlimdvv | ⊢ ( 𝜑  →  ( ∃ 𝑓 ∃ 𝑔 ( ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊  ∧  𝑥  =  ( seq 1 (  +  ,  ( 𝐹  ∘  𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) )  ∧  ( 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊  ∧  𝑦  =  ( seq 1 (  +  ,  ( 𝐹  ∘  𝑔 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) )  →  𝑥  =  𝑦 ) ) | 
						
							| 88 | 27 87 | biimtrrid | ⊢ ( 𝜑  →  ( ( ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊  ∧  𝑥  =  ( seq 1 (  +  ,  ( 𝐹  ∘  𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) )  ∧  ∃ 𝑔 ( 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊  ∧  𝑦  =  ( seq 1 (  +  ,  ( 𝐹  ∘  𝑔 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) )  →  𝑥  =  𝑦 ) ) | 
						
							| 89 | 88 | alrimivv | ⊢ ( 𝜑  →  ∀ 𝑥 ∀ 𝑦 ( ( ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊  ∧  𝑥  =  ( seq 1 (  +  ,  ( 𝐹  ∘  𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) )  ∧  ∃ 𝑔 ( 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊  ∧  𝑦  =  ( seq 1 (  +  ,  ( 𝐹  ∘  𝑔 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) )  →  𝑥  =  𝑦 ) ) | 
						
							| 90 |  | eqeq1 | ⊢ ( 𝑥  =  𝑦  →  ( 𝑥  =  ( seq 1 (  +  ,  ( 𝐹  ∘  𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) )  ↔  𝑦  =  ( seq 1 (  +  ,  ( 𝐹  ∘  𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 91 | 90 | anbi2d | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊  ∧  𝑥  =  ( seq 1 (  +  ,  ( 𝐹  ∘  𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) )  ↔  ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊  ∧  𝑦  =  ( seq 1 (  +  ,  ( 𝐹  ∘  𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ) ) | 
						
							| 92 | 91 | exbidv | ⊢ ( 𝑥  =  𝑦  →  ( ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊  ∧  𝑥  =  ( seq 1 (  +  ,  ( 𝐹  ∘  𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) )  ↔  ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊  ∧  𝑦  =  ( seq 1 (  +  ,  ( 𝐹  ∘  𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ) ) | 
						
							| 93 |  | f1oeq1 | ⊢ ( 𝑓  =  𝑔  →  ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊  ↔  𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) | 
						
							| 94 |  | coeq2 | ⊢ ( 𝑓  =  𝑔  →  ( 𝐹  ∘  𝑓 )  =  ( 𝐹  ∘  𝑔 ) ) | 
						
							| 95 | 94 | seqeq3d | ⊢ ( 𝑓  =  𝑔  →  seq 1 (  +  ,  ( 𝐹  ∘  𝑓 ) )  =  seq 1 (  +  ,  ( 𝐹  ∘  𝑔 ) ) ) | 
						
							| 96 | 95 | fveq1d | ⊢ ( 𝑓  =  𝑔  →  ( seq 1 (  +  ,  ( 𝐹  ∘  𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) )  =  ( seq 1 (  +  ,  ( 𝐹  ∘  𝑔 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 97 | 96 | eqeq2d | ⊢ ( 𝑓  =  𝑔  →  ( 𝑦  =  ( seq 1 (  +  ,  ( 𝐹  ∘  𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) )  ↔  𝑦  =  ( seq 1 (  +  ,  ( 𝐹  ∘  𝑔 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 98 | 93 97 | anbi12d | ⊢ ( 𝑓  =  𝑔  →  ( ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊  ∧  𝑦  =  ( seq 1 (  +  ,  ( 𝐹  ∘  𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) )  ↔  ( 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊  ∧  𝑦  =  ( seq 1 (  +  ,  ( 𝐹  ∘  𝑔 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ) ) | 
						
							| 99 | 98 | cbvexvw | ⊢ ( ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊  ∧  𝑦  =  ( seq 1 (  +  ,  ( 𝐹  ∘  𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) )  ↔  ∃ 𝑔 ( 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊  ∧  𝑦  =  ( seq 1 (  +  ,  ( 𝐹  ∘  𝑔 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 100 | 92 99 | bitrdi | ⊢ ( 𝑥  =  𝑦  →  ( ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊  ∧  𝑥  =  ( seq 1 (  +  ,  ( 𝐹  ∘  𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) )  ↔  ∃ 𝑔 ( 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊  ∧  𝑦  =  ( seq 1 (  +  ,  ( 𝐹  ∘  𝑔 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ) ) | 
						
							| 101 | 100 | eu4 | ⊢ ( ∃! 𝑥 ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊  ∧  𝑥  =  ( seq 1 (  +  ,  ( 𝐹  ∘  𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) )  ↔  ( ∃ 𝑥 ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊  ∧  𝑥  =  ( seq 1 (  +  ,  ( 𝐹  ∘  𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) )  ∧  ∀ 𝑥 ∀ 𝑦 ( ( ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊  ∧  𝑥  =  ( seq 1 (  +  ,  ( 𝐹  ∘  𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) )  ∧  ∃ 𝑔 ( 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊  ∧  𝑦  =  ( seq 1 (  +  ,  ( 𝐹  ∘  𝑔 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) )  →  𝑥  =  𝑦 ) ) ) | 
						
							| 102 | 26 89 101 | sylanbrc | ⊢ ( 𝜑  →  ∃! 𝑥 ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊  ∧  𝑥  =  ( seq 1 (  +  ,  ( 𝐹  ∘  𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ) |