| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gsumval3.b | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | gsumval3.0 | ⊢  0   =  ( 0g ‘ 𝐺 ) | 
						
							| 3 |  | gsumval3.p | ⊢  +   =  ( +g ‘ 𝐺 ) | 
						
							| 4 |  | gsumval3.z | ⊢ 𝑍  =  ( Cntz ‘ 𝐺 ) | 
						
							| 5 |  | gsumval3.g | ⊢ ( 𝜑  →  𝐺  ∈  Mnd ) | 
						
							| 6 |  | gsumval3.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑉 ) | 
						
							| 7 |  | gsumval3.f | ⊢ ( 𝜑  →  𝐹 : 𝐴 ⟶ 𝐵 ) | 
						
							| 8 |  | gsumval3.c | ⊢ ( 𝜑  →  ran  𝐹  ⊆  ( 𝑍 ‘ ran  𝐹 ) ) | 
						
							| 9 |  | gsumval3.m | ⊢ ( 𝜑  →  𝑀  ∈  ℕ ) | 
						
							| 10 |  | gsumval3.h | ⊢ ( 𝜑  →  𝐻 : ( 1 ... 𝑀 ) –1-1→ 𝐴 ) | 
						
							| 11 |  | gsumval3.n | ⊢ ( 𝜑  →  ( 𝐹  supp   0  )  ⊆  ran  𝐻 ) | 
						
							| 12 |  | gsumval3.w | ⊢ 𝑊  =  ( ( 𝐹  ∘  𝐻 )  supp   0  ) | 
						
							| 13 |  | f1f | ⊢ ( 𝐻 : ( 1 ... 𝑀 ) –1-1→ 𝐴  →  𝐻 : ( 1 ... 𝑀 ) ⟶ 𝐴 ) | 
						
							| 14 | 10 13 | syl | ⊢ ( 𝜑  →  𝐻 : ( 1 ... 𝑀 ) ⟶ 𝐴 ) | 
						
							| 15 |  | fzfid | ⊢ ( 𝜑  →  ( 1 ... 𝑀 )  ∈  Fin ) | 
						
							| 16 | 14 15 | fexd | ⊢ ( 𝜑  →  𝐻  ∈  V ) | 
						
							| 17 |  | vex | ⊢ 𝑓  ∈  V | 
						
							| 18 |  | coexg | ⊢ ( ( 𝐻  ∈  V  ∧  𝑓  ∈  V )  →  ( 𝐻  ∘  𝑓 )  ∈  V ) | 
						
							| 19 | 16 17 18 | sylancl | ⊢ ( 𝜑  →  ( 𝐻  ∘  𝑓 )  ∈  V ) | 
						
							| 20 | 19 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑊  ≠  ∅ )  ∧  ( ¬  𝐴  ∈  ran  ...  ∧  𝑓  Isom   <  ,   <  ( ( 1 ... ( ♯ ‘ 𝑊 ) ) ,  𝑊 ) ) )  →  ( 𝐻  ∘  𝑓 )  ∈  V ) | 
						
							| 21 | 1 2 3 4 5 6 7 8 9 10 11 12 | gsumval3lem1 | ⊢ ( ( ( 𝜑  ∧  𝑊  ≠  ∅ )  ∧  ( ¬  𝐴  ∈  ran  ...  ∧  𝑓  Isom   <  ,   <  ( ( 1 ... ( ♯ ‘ 𝑊 ) ) ,  𝑊 ) ) )  →  ( 𝐻  ∘  𝑓 ) : ( 1 ... ( ♯ ‘ ( 𝐹  supp   0  ) ) ) –1-1-onto→ ( 𝐹  supp   0  ) ) | 
						
							| 22 |  | fzfi | ⊢ ( 1 ... 𝑀 )  ∈  Fin | 
						
							| 23 |  | suppssdm | ⊢ ( ( 𝐹  ∘  𝐻 )  supp   0  )  ⊆  dom  ( 𝐹  ∘  𝐻 ) | 
						
							| 24 | 12 23 | eqsstri | ⊢ 𝑊  ⊆  dom  ( 𝐹  ∘  𝐻 ) | 
						
							| 25 | 7 14 | fcod | ⊢ ( 𝜑  →  ( 𝐹  ∘  𝐻 ) : ( 1 ... 𝑀 ) ⟶ 𝐵 ) | 
						
							| 26 | 24 25 | fssdm | ⊢ ( 𝜑  →  𝑊  ⊆  ( 1 ... 𝑀 ) ) | 
						
							| 27 |  | ssfi | ⊢ ( ( ( 1 ... 𝑀 )  ∈  Fin  ∧  𝑊  ⊆  ( 1 ... 𝑀 ) )  →  𝑊  ∈  Fin ) | 
						
							| 28 | 22 26 27 | sylancr | ⊢ ( 𝜑  →  𝑊  ∈  Fin ) | 
						
							| 29 | 28 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑊  ≠  ∅ )  ∧  ( ¬  𝐴  ∈  ran  ...  ∧  𝑓  Isom   <  ,   <  ( ( 1 ... ( ♯ ‘ 𝑊 ) ) ,  𝑊 ) ) )  →  𝑊  ∈  Fin ) | 
						
							| 30 | 10 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑊  ≠  ∅ )  ∧  ( ¬  𝐴  ∈  ran  ...  ∧  𝑓  Isom   <  ,   <  ( ( 1 ... ( ♯ ‘ 𝑊 ) ) ,  𝑊 ) ) )  →  𝐻 : ( 1 ... 𝑀 ) –1-1→ 𝐴 ) | 
						
							| 31 | 26 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑊  ≠  ∅ )  ∧  ( ¬  𝐴  ∈  ran  ...  ∧  𝑓  Isom   <  ,   <  ( ( 1 ... ( ♯ ‘ 𝑊 ) ) ,  𝑊 ) ) )  →  𝑊  ⊆  ( 1 ... 𝑀 ) ) | 
						
							| 32 |  | f1ores | ⊢ ( ( 𝐻 : ( 1 ... 𝑀 ) –1-1→ 𝐴  ∧  𝑊  ⊆  ( 1 ... 𝑀 ) )  →  ( 𝐻  ↾  𝑊 ) : 𝑊 –1-1-onto→ ( 𝐻  “  𝑊 ) ) | 
						
							| 33 | 30 31 32 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑊  ≠  ∅ )  ∧  ( ¬  𝐴  ∈  ran  ...  ∧  𝑓  Isom   <  ,   <  ( ( 1 ... ( ♯ ‘ 𝑊 ) ) ,  𝑊 ) ) )  →  ( 𝐻  ↾  𝑊 ) : 𝑊 –1-1-onto→ ( 𝐻  “  𝑊 ) ) | 
						
							| 34 | 12 | imaeq2i | ⊢ ( 𝐻  “  𝑊 )  =  ( 𝐻  “  ( ( 𝐹  ∘  𝐻 )  supp   0  ) ) | 
						
							| 35 | 7 6 | fexd | ⊢ ( 𝜑  →  𝐹  ∈  V ) | 
						
							| 36 |  | ovex | ⊢ ( 1 ... 𝑀 )  ∈  V | 
						
							| 37 |  | fex | ⊢ ( ( 𝐻 : ( 1 ... 𝑀 ) ⟶ 𝐴  ∧  ( 1 ... 𝑀 )  ∈  V )  →  𝐻  ∈  V ) | 
						
							| 38 | 14 36 37 | sylancl | ⊢ ( 𝜑  →  𝐻  ∈  V ) | 
						
							| 39 | 35 38 | jca | ⊢ ( 𝜑  →  ( 𝐹  ∈  V  ∧  𝐻  ∈  V ) ) | 
						
							| 40 |  | f1fun | ⊢ ( 𝐻 : ( 1 ... 𝑀 ) –1-1→ 𝐴  →  Fun  𝐻 ) | 
						
							| 41 | 10 40 | syl | ⊢ ( 𝜑  →  Fun  𝐻 ) | 
						
							| 42 | 41 11 | jca | ⊢ ( 𝜑  →  ( Fun  𝐻  ∧  ( 𝐹  supp   0  )  ⊆  ran  𝐻 ) ) | 
						
							| 43 |  | imacosupp | ⊢ ( ( 𝐹  ∈  V  ∧  𝐻  ∈  V )  →  ( ( Fun  𝐻  ∧  ( 𝐹  supp   0  )  ⊆  ran  𝐻 )  →  ( 𝐻  “  ( ( 𝐹  ∘  𝐻 )  supp   0  ) )  =  ( 𝐹  supp   0  ) ) ) | 
						
							| 44 | 39 42 43 | sylc | ⊢ ( 𝜑  →  ( 𝐻  “  ( ( 𝐹  ∘  𝐻 )  supp   0  ) )  =  ( 𝐹  supp   0  ) ) | 
						
							| 45 | 44 | adantr | ⊢ ( ( 𝜑  ∧  𝑊  ≠  ∅ )  →  ( 𝐻  “  ( ( 𝐹  ∘  𝐻 )  supp   0  ) )  =  ( 𝐹  supp   0  ) ) | 
						
							| 46 | 34 45 | eqtrid | ⊢ ( ( 𝜑  ∧  𝑊  ≠  ∅ )  →  ( 𝐻  “  𝑊 )  =  ( 𝐹  supp   0  ) ) | 
						
							| 47 | 46 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑊  ≠  ∅ )  ∧  ( ¬  𝐴  ∈  ran  ...  ∧  𝑓  Isom   <  ,   <  ( ( 1 ... ( ♯ ‘ 𝑊 ) ) ,  𝑊 ) ) )  →  ( 𝐻  “  𝑊 )  =  ( 𝐹  supp   0  ) ) | 
						
							| 48 | 47 | f1oeq3d | ⊢ ( ( ( 𝜑  ∧  𝑊  ≠  ∅ )  ∧  ( ¬  𝐴  ∈  ran  ...  ∧  𝑓  Isom   <  ,   <  ( ( 1 ... ( ♯ ‘ 𝑊 ) ) ,  𝑊 ) ) )  →  ( ( 𝐻  ↾  𝑊 ) : 𝑊 –1-1-onto→ ( 𝐻  “  𝑊 )  ↔  ( 𝐻  ↾  𝑊 ) : 𝑊 –1-1-onto→ ( 𝐹  supp   0  ) ) ) | 
						
							| 49 | 33 48 | mpbid | ⊢ ( ( ( 𝜑  ∧  𝑊  ≠  ∅ )  ∧  ( ¬  𝐴  ∈  ran  ...  ∧  𝑓  Isom   <  ,   <  ( ( 1 ... ( ♯ ‘ 𝑊 ) ) ,  𝑊 ) ) )  →  ( 𝐻  ↾  𝑊 ) : 𝑊 –1-1-onto→ ( 𝐹  supp   0  ) ) | 
						
							| 50 | 29 49 | hasheqf1od | ⊢ ( ( ( 𝜑  ∧  𝑊  ≠  ∅ )  ∧  ( ¬  𝐴  ∈  ran  ...  ∧  𝑓  Isom   <  ,   <  ( ( 1 ... ( ♯ ‘ 𝑊 ) ) ,  𝑊 ) ) )  →  ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ ( 𝐹  supp   0  ) ) ) | 
						
							| 51 | 50 | fveq2d | ⊢ ( ( ( 𝜑  ∧  𝑊  ≠  ∅ )  ∧  ( ¬  𝐴  ∈  ran  ...  ∧  𝑓  Isom   <  ,   <  ( ( 1 ... ( ♯ ‘ 𝑊 ) ) ,  𝑊 ) ) )  →  ( seq 1 (  +  ,  ( 𝐹  ∘  ( 𝐻  ∘  𝑓 ) ) ) ‘ ( ♯ ‘ 𝑊 ) )  =  ( seq 1 (  +  ,  ( 𝐹  ∘  ( 𝐻  ∘  𝑓 ) ) ) ‘ ( ♯ ‘ ( 𝐹  supp   0  ) ) ) ) | 
						
							| 52 | 21 51 | jca | ⊢ ( ( ( 𝜑  ∧  𝑊  ≠  ∅ )  ∧  ( ¬  𝐴  ∈  ran  ...  ∧  𝑓  Isom   <  ,   <  ( ( 1 ... ( ♯ ‘ 𝑊 ) ) ,  𝑊 ) ) )  →  ( ( 𝐻  ∘  𝑓 ) : ( 1 ... ( ♯ ‘ ( 𝐹  supp   0  ) ) ) –1-1-onto→ ( 𝐹  supp   0  )  ∧  ( seq 1 (  +  ,  ( 𝐹  ∘  ( 𝐻  ∘  𝑓 ) ) ) ‘ ( ♯ ‘ 𝑊 ) )  =  ( seq 1 (  +  ,  ( 𝐹  ∘  ( 𝐻  ∘  𝑓 ) ) ) ‘ ( ♯ ‘ ( 𝐹  supp   0  ) ) ) ) ) | 
						
							| 53 |  | f1oeq1 | ⊢ ( 𝑔  =  ( 𝐻  ∘  𝑓 )  →  ( 𝑔 : ( 1 ... ( ♯ ‘ ( 𝐹  supp   0  ) ) ) –1-1-onto→ ( 𝐹  supp   0  )  ↔  ( 𝐻  ∘  𝑓 ) : ( 1 ... ( ♯ ‘ ( 𝐹  supp   0  ) ) ) –1-1-onto→ ( 𝐹  supp   0  ) ) ) | 
						
							| 54 |  | coeq2 | ⊢ ( 𝑔  =  ( 𝐻  ∘  𝑓 )  →  ( 𝐹  ∘  𝑔 )  =  ( 𝐹  ∘  ( 𝐻  ∘  𝑓 ) ) ) | 
						
							| 55 | 54 | seqeq3d | ⊢ ( 𝑔  =  ( 𝐻  ∘  𝑓 )  →  seq 1 (  +  ,  ( 𝐹  ∘  𝑔 ) )  =  seq 1 (  +  ,  ( 𝐹  ∘  ( 𝐻  ∘  𝑓 ) ) ) ) | 
						
							| 56 | 55 | fveq1d | ⊢ ( 𝑔  =  ( 𝐻  ∘  𝑓 )  →  ( seq 1 (  +  ,  ( 𝐹  ∘  𝑔 ) ) ‘ ( ♯ ‘ ( 𝐹  supp   0  ) ) )  =  ( seq 1 (  +  ,  ( 𝐹  ∘  ( 𝐻  ∘  𝑓 ) ) ) ‘ ( ♯ ‘ ( 𝐹  supp   0  ) ) ) ) | 
						
							| 57 | 56 | eqeq2d | ⊢ ( 𝑔  =  ( 𝐻  ∘  𝑓 )  →  ( ( seq 1 (  +  ,  ( 𝐹  ∘  ( 𝐻  ∘  𝑓 ) ) ) ‘ ( ♯ ‘ 𝑊 ) )  =  ( seq 1 (  +  ,  ( 𝐹  ∘  𝑔 ) ) ‘ ( ♯ ‘ ( 𝐹  supp   0  ) ) )  ↔  ( seq 1 (  +  ,  ( 𝐹  ∘  ( 𝐻  ∘  𝑓 ) ) ) ‘ ( ♯ ‘ 𝑊 ) )  =  ( seq 1 (  +  ,  ( 𝐹  ∘  ( 𝐻  ∘  𝑓 ) ) ) ‘ ( ♯ ‘ ( 𝐹  supp   0  ) ) ) ) ) | 
						
							| 58 | 53 57 | anbi12d | ⊢ ( 𝑔  =  ( 𝐻  ∘  𝑓 )  →  ( ( 𝑔 : ( 1 ... ( ♯ ‘ ( 𝐹  supp   0  ) ) ) –1-1-onto→ ( 𝐹  supp   0  )  ∧  ( seq 1 (  +  ,  ( 𝐹  ∘  ( 𝐻  ∘  𝑓 ) ) ) ‘ ( ♯ ‘ 𝑊 ) )  =  ( seq 1 (  +  ,  ( 𝐹  ∘  𝑔 ) ) ‘ ( ♯ ‘ ( 𝐹  supp   0  ) ) ) )  ↔  ( ( 𝐻  ∘  𝑓 ) : ( 1 ... ( ♯ ‘ ( 𝐹  supp   0  ) ) ) –1-1-onto→ ( 𝐹  supp   0  )  ∧  ( seq 1 (  +  ,  ( 𝐹  ∘  ( 𝐻  ∘  𝑓 ) ) ) ‘ ( ♯ ‘ 𝑊 ) )  =  ( seq 1 (  +  ,  ( 𝐹  ∘  ( 𝐻  ∘  𝑓 ) ) ) ‘ ( ♯ ‘ ( 𝐹  supp   0  ) ) ) ) ) ) | 
						
							| 59 | 20 52 58 | spcedv | ⊢ ( ( ( 𝜑  ∧  𝑊  ≠  ∅ )  ∧  ( ¬  𝐴  ∈  ran  ...  ∧  𝑓  Isom   <  ,   <  ( ( 1 ... ( ♯ ‘ 𝑊 ) ) ,  𝑊 ) ) )  →  ∃ 𝑔 ( 𝑔 : ( 1 ... ( ♯ ‘ ( 𝐹  supp   0  ) ) ) –1-1-onto→ ( 𝐹  supp   0  )  ∧  ( seq 1 (  +  ,  ( 𝐹  ∘  ( 𝐻  ∘  𝑓 ) ) ) ‘ ( ♯ ‘ 𝑊 ) )  =  ( seq 1 (  +  ,  ( 𝐹  ∘  𝑔 ) ) ‘ ( ♯ ‘ ( 𝐹  supp   0  ) ) ) ) ) | 
						
							| 60 | 5 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑊  ≠  ∅ )  ∧  ( ¬  𝐴  ∈  ran  ...  ∧  𝑓  Isom   <  ,   <  ( ( 1 ... ( ♯ ‘ 𝑊 ) ) ,  𝑊 ) ) )  →  𝐺  ∈  Mnd ) | 
						
							| 61 | 6 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑊  ≠  ∅ )  ∧  ( ¬  𝐴  ∈  ran  ...  ∧  𝑓  Isom   <  ,   <  ( ( 1 ... ( ♯ ‘ 𝑊 ) ) ,  𝑊 ) ) )  →  𝐴  ∈  𝑉 ) | 
						
							| 62 | 7 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑊  ≠  ∅ )  ∧  ( ¬  𝐴  ∈  ran  ...  ∧  𝑓  Isom   <  ,   <  ( ( 1 ... ( ♯ ‘ 𝑊 ) ) ,  𝑊 ) ) )  →  𝐹 : 𝐴 ⟶ 𝐵 ) | 
						
							| 63 | 8 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑊  ≠  ∅ )  ∧  ( ¬  𝐴  ∈  ran  ...  ∧  𝑓  Isom   <  ,   <  ( ( 1 ... ( ♯ ‘ 𝑊 ) ) ,  𝑊 ) ) )  →  ran  𝐹  ⊆  ( 𝑍 ‘ ran  𝐹 ) ) | 
						
							| 64 |  | f1f1orn | ⊢ ( 𝐻 : ( 1 ... 𝑀 ) –1-1→ 𝐴  →  𝐻 : ( 1 ... 𝑀 ) –1-1-onto→ ran  𝐻 ) | 
						
							| 65 | 10 64 | syl | ⊢ ( 𝜑  →  𝐻 : ( 1 ... 𝑀 ) –1-1-onto→ ran  𝐻 ) | 
						
							| 66 |  | f1oen3g | ⊢ ( ( 𝐻  ∈  V  ∧  𝐻 : ( 1 ... 𝑀 ) –1-1-onto→ ran  𝐻 )  →  ( 1 ... 𝑀 )  ≈  ran  𝐻 ) | 
						
							| 67 | 16 65 66 | syl2anc | ⊢ ( 𝜑  →  ( 1 ... 𝑀 )  ≈  ran  𝐻 ) | 
						
							| 68 |  | enfi | ⊢ ( ( 1 ... 𝑀 )  ≈  ran  𝐻  →  ( ( 1 ... 𝑀 )  ∈  Fin  ↔  ran  𝐻  ∈  Fin ) ) | 
						
							| 69 | 67 68 | syl | ⊢ ( 𝜑  →  ( ( 1 ... 𝑀 )  ∈  Fin  ↔  ran  𝐻  ∈  Fin ) ) | 
						
							| 70 | 22 69 | mpbii | ⊢ ( 𝜑  →  ran  𝐻  ∈  Fin ) | 
						
							| 71 | 70 11 | ssfid | ⊢ ( 𝜑  →  ( 𝐹  supp   0  )  ∈  Fin ) | 
						
							| 72 | 71 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑊  ≠  ∅ )  ∧  ( ¬  𝐴  ∈  ran  ...  ∧  𝑓  Isom   <  ,   <  ( ( 1 ... ( ♯ ‘ 𝑊 ) ) ,  𝑊 ) ) )  →  ( 𝐹  supp   0  )  ∈  Fin ) | 
						
							| 73 | 12 | neeq1i | ⊢ ( 𝑊  ≠  ∅  ↔  ( ( 𝐹  ∘  𝐻 )  supp   0  )  ≠  ∅ ) | 
						
							| 74 |  | supp0cosupp0 | ⊢ ( ( 𝐹  ∈  V  ∧  𝐻  ∈  V )  →  ( ( 𝐹  supp   0  )  =  ∅  →  ( ( 𝐹  ∘  𝐻 )  supp   0  )  =  ∅ ) ) | 
						
							| 75 | 74 | necon3d | ⊢ ( ( 𝐹  ∈  V  ∧  𝐻  ∈  V )  →  ( ( ( 𝐹  ∘  𝐻 )  supp   0  )  ≠  ∅  →  ( 𝐹  supp   0  )  ≠  ∅ ) ) | 
						
							| 76 | 35 38 75 | syl2anc | ⊢ ( 𝜑  →  ( ( ( 𝐹  ∘  𝐻 )  supp   0  )  ≠  ∅  →  ( 𝐹  supp   0  )  ≠  ∅ ) ) | 
						
							| 77 | 73 76 | biimtrid | ⊢ ( 𝜑  →  ( 𝑊  ≠  ∅  →  ( 𝐹  supp   0  )  ≠  ∅ ) ) | 
						
							| 78 | 77 | imp | ⊢ ( ( 𝜑  ∧  𝑊  ≠  ∅ )  →  ( 𝐹  supp   0  )  ≠  ∅ ) | 
						
							| 79 | 78 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑊  ≠  ∅ )  ∧  ( ¬  𝐴  ∈  ran  ...  ∧  𝑓  Isom   <  ,   <  ( ( 1 ... ( ♯ ‘ 𝑊 ) ) ,  𝑊 ) ) )  →  ( 𝐹  supp   0  )  ≠  ∅ ) | 
						
							| 80 | 11 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑊  ≠  ∅ )  ∧  ( ¬  𝐴  ∈  ran  ...  ∧  𝑓  Isom   <  ,   <  ( ( 1 ... ( ♯ ‘ 𝑊 ) ) ,  𝑊 ) ) )  →  ( 𝐹  supp   0  )  ⊆  ran  𝐻 ) | 
						
							| 81 | 14 | frnd | ⊢ ( 𝜑  →  ran  𝐻  ⊆  𝐴 ) | 
						
							| 82 | 81 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑊  ≠  ∅ )  ∧  ( ¬  𝐴  ∈  ran  ...  ∧  𝑓  Isom   <  ,   <  ( ( 1 ... ( ♯ ‘ 𝑊 ) ) ,  𝑊 ) ) )  →  ran  𝐻  ⊆  𝐴 ) | 
						
							| 83 | 80 82 | sstrd | ⊢ ( ( ( 𝜑  ∧  𝑊  ≠  ∅ )  ∧  ( ¬  𝐴  ∈  ran  ...  ∧  𝑓  Isom   <  ,   <  ( ( 1 ... ( ♯ ‘ 𝑊 ) ) ,  𝑊 ) ) )  →  ( 𝐹  supp   0  )  ⊆  𝐴 ) | 
						
							| 84 | 1 2 3 4 60 61 62 63 72 79 83 | gsumval3eu | ⊢ ( ( ( 𝜑  ∧  𝑊  ≠  ∅ )  ∧  ( ¬  𝐴  ∈  ran  ...  ∧  𝑓  Isom   <  ,   <  ( ( 1 ... ( ♯ ‘ 𝑊 ) ) ,  𝑊 ) ) )  →  ∃! 𝑥 ∃ 𝑔 ( 𝑔 : ( 1 ... ( ♯ ‘ ( 𝐹  supp   0  ) ) ) –1-1-onto→ ( 𝐹  supp   0  )  ∧  𝑥  =  ( seq 1 (  +  ,  ( 𝐹  ∘  𝑔 ) ) ‘ ( ♯ ‘ ( 𝐹  supp   0  ) ) ) ) ) | 
						
							| 85 |  | iota1 | ⊢ ( ∃! 𝑥 ∃ 𝑔 ( 𝑔 : ( 1 ... ( ♯ ‘ ( 𝐹  supp   0  ) ) ) –1-1-onto→ ( 𝐹  supp   0  )  ∧  𝑥  =  ( seq 1 (  +  ,  ( 𝐹  ∘  𝑔 ) ) ‘ ( ♯ ‘ ( 𝐹  supp   0  ) ) ) )  →  ( ∃ 𝑔 ( 𝑔 : ( 1 ... ( ♯ ‘ ( 𝐹  supp   0  ) ) ) –1-1-onto→ ( 𝐹  supp   0  )  ∧  𝑥  =  ( seq 1 (  +  ,  ( 𝐹  ∘  𝑔 ) ) ‘ ( ♯ ‘ ( 𝐹  supp   0  ) ) ) )  ↔  ( ℩ 𝑥 ∃ 𝑔 ( 𝑔 : ( 1 ... ( ♯ ‘ ( 𝐹  supp   0  ) ) ) –1-1-onto→ ( 𝐹  supp   0  )  ∧  𝑥  =  ( seq 1 (  +  ,  ( 𝐹  ∘  𝑔 ) ) ‘ ( ♯ ‘ ( 𝐹  supp   0  ) ) ) ) )  =  𝑥 ) ) | 
						
							| 86 | 84 85 | syl | ⊢ ( ( ( 𝜑  ∧  𝑊  ≠  ∅ )  ∧  ( ¬  𝐴  ∈  ran  ...  ∧  𝑓  Isom   <  ,   <  ( ( 1 ... ( ♯ ‘ 𝑊 ) ) ,  𝑊 ) ) )  →  ( ∃ 𝑔 ( 𝑔 : ( 1 ... ( ♯ ‘ ( 𝐹  supp   0  ) ) ) –1-1-onto→ ( 𝐹  supp   0  )  ∧  𝑥  =  ( seq 1 (  +  ,  ( 𝐹  ∘  𝑔 ) ) ‘ ( ♯ ‘ ( 𝐹  supp   0  ) ) ) )  ↔  ( ℩ 𝑥 ∃ 𝑔 ( 𝑔 : ( 1 ... ( ♯ ‘ ( 𝐹  supp   0  ) ) ) –1-1-onto→ ( 𝐹  supp   0  )  ∧  𝑥  =  ( seq 1 (  +  ,  ( 𝐹  ∘  𝑔 ) ) ‘ ( ♯ ‘ ( 𝐹  supp   0  ) ) ) ) )  =  𝑥 ) ) | 
						
							| 87 |  | eqid | ⊢ ( 𝐹  supp   0  )  =  ( 𝐹  supp   0  ) | 
						
							| 88 |  | simprl | ⊢ ( ( ( 𝜑  ∧  𝑊  ≠  ∅ )  ∧  ( ¬  𝐴  ∈  ran  ...  ∧  𝑓  Isom   <  ,   <  ( ( 1 ... ( ♯ ‘ 𝑊 ) ) ,  𝑊 ) ) )  →  ¬  𝐴  ∈  ran  ... ) | 
						
							| 89 | 1 2 3 4 60 61 62 63 72 79 87 88 | gsumval3a | ⊢ ( ( ( 𝜑  ∧  𝑊  ≠  ∅ )  ∧  ( ¬  𝐴  ∈  ran  ...  ∧  𝑓  Isom   <  ,   <  ( ( 1 ... ( ♯ ‘ 𝑊 ) ) ,  𝑊 ) ) )  →  ( 𝐺  Σg  𝐹 )  =  ( ℩ 𝑥 ∃ 𝑔 ( 𝑔 : ( 1 ... ( ♯ ‘ ( 𝐹  supp   0  ) ) ) –1-1-onto→ ( 𝐹  supp   0  )  ∧  𝑥  =  ( seq 1 (  +  ,  ( 𝐹  ∘  𝑔 ) ) ‘ ( ♯ ‘ ( 𝐹  supp   0  ) ) ) ) ) ) | 
						
							| 90 | 89 | eqeq1d | ⊢ ( ( ( 𝜑  ∧  𝑊  ≠  ∅ )  ∧  ( ¬  𝐴  ∈  ran  ...  ∧  𝑓  Isom   <  ,   <  ( ( 1 ... ( ♯ ‘ 𝑊 ) ) ,  𝑊 ) ) )  →  ( ( 𝐺  Σg  𝐹 )  =  𝑥  ↔  ( ℩ 𝑥 ∃ 𝑔 ( 𝑔 : ( 1 ... ( ♯ ‘ ( 𝐹  supp   0  ) ) ) –1-1-onto→ ( 𝐹  supp   0  )  ∧  𝑥  =  ( seq 1 (  +  ,  ( 𝐹  ∘  𝑔 ) ) ‘ ( ♯ ‘ ( 𝐹  supp   0  ) ) ) ) )  =  𝑥 ) ) | 
						
							| 91 | 86 90 | bitr4d | ⊢ ( ( ( 𝜑  ∧  𝑊  ≠  ∅ )  ∧  ( ¬  𝐴  ∈  ran  ...  ∧  𝑓  Isom   <  ,   <  ( ( 1 ... ( ♯ ‘ 𝑊 ) ) ,  𝑊 ) ) )  →  ( ∃ 𝑔 ( 𝑔 : ( 1 ... ( ♯ ‘ ( 𝐹  supp   0  ) ) ) –1-1-onto→ ( 𝐹  supp   0  )  ∧  𝑥  =  ( seq 1 (  +  ,  ( 𝐹  ∘  𝑔 ) ) ‘ ( ♯ ‘ ( 𝐹  supp   0  ) ) ) )  ↔  ( 𝐺  Σg  𝐹 )  =  𝑥 ) ) | 
						
							| 92 | 91 | alrimiv | ⊢ ( ( ( 𝜑  ∧  𝑊  ≠  ∅ )  ∧  ( ¬  𝐴  ∈  ran  ...  ∧  𝑓  Isom   <  ,   <  ( ( 1 ... ( ♯ ‘ 𝑊 ) ) ,  𝑊 ) ) )  →  ∀ 𝑥 ( ∃ 𝑔 ( 𝑔 : ( 1 ... ( ♯ ‘ ( 𝐹  supp   0  ) ) ) –1-1-onto→ ( 𝐹  supp   0  )  ∧  𝑥  =  ( seq 1 (  +  ,  ( 𝐹  ∘  𝑔 ) ) ‘ ( ♯ ‘ ( 𝐹  supp   0  ) ) ) )  ↔  ( 𝐺  Σg  𝐹 )  =  𝑥 ) ) | 
						
							| 93 |  | fvex | ⊢ ( seq 1 (  +  ,  ( 𝐹  ∘  ( 𝐻  ∘  𝑓 ) ) ) ‘ ( ♯ ‘ 𝑊 ) )  ∈  V | 
						
							| 94 |  | eqeq1 | ⊢ ( 𝑥  =  ( seq 1 (  +  ,  ( 𝐹  ∘  ( 𝐻  ∘  𝑓 ) ) ) ‘ ( ♯ ‘ 𝑊 ) )  →  ( 𝑥  =  ( seq 1 (  +  ,  ( 𝐹  ∘  𝑔 ) ) ‘ ( ♯ ‘ ( 𝐹  supp   0  ) ) )  ↔  ( seq 1 (  +  ,  ( 𝐹  ∘  ( 𝐻  ∘  𝑓 ) ) ) ‘ ( ♯ ‘ 𝑊 ) )  =  ( seq 1 (  +  ,  ( 𝐹  ∘  𝑔 ) ) ‘ ( ♯ ‘ ( 𝐹  supp   0  ) ) ) ) ) | 
						
							| 95 | 94 | anbi2d | ⊢ ( 𝑥  =  ( seq 1 (  +  ,  ( 𝐹  ∘  ( 𝐻  ∘  𝑓 ) ) ) ‘ ( ♯ ‘ 𝑊 ) )  →  ( ( 𝑔 : ( 1 ... ( ♯ ‘ ( 𝐹  supp   0  ) ) ) –1-1-onto→ ( 𝐹  supp   0  )  ∧  𝑥  =  ( seq 1 (  +  ,  ( 𝐹  ∘  𝑔 ) ) ‘ ( ♯ ‘ ( 𝐹  supp   0  ) ) ) )  ↔  ( 𝑔 : ( 1 ... ( ♯ ‘ ( 𝐹  supp   0  ) ) ) –1-1-onto→ ( 𝐹  supp   0  )  ∧  ( seq 1 (  +  ,  ( 𝐹  ∘  ( 𝐻  ∘  𝑓 ) ) ) ‘ ( ♯ ‘ 𝑊 ) )  =  ( seq 1 (  +  ,  ( 𝐹  ∘  𝑔 ) ) ‘ ( ♯ ‘ ( 𝐹  supp   0  ) ) ) ) ) ) | 
						
							| 96 | 95 | exbidv | ⊢ ( 𝑥  =  ( seq 1 (  +  ,  ( 𝐹  ∘  ( 𝐻  ∘  𝑓 ) ) ) ‘ ( ♯ ‘ 𝑊 ) )  →  ( ∃ 𝑔 ( 𝑔 : ( 1 ... ( ♯ ‘ ( 𝐹  supp   0  ) ) ) –1-1-onto→ ( 𝐹  supp   0  )  ∧  𝑥  =  ( seq 1 (  +  ,  ( 𝐹  ∘  𝑔 ) ) ‘ ( ♯ ‘ ( 𝐹  supp   0  ) ) ) )  ↔  ∃ 𝑔 ( 𝑔 : ( 1 ... ( ♯ ‘ ( 𝐹  supp   0  ) ) ) –1-1-onto→ ( 𝐹  supp   0  )  ∧  ( seq 1 (  +  ,  ( 𝐹  ∘  ( 𝐻  ∘  𝑓 ) ) ) ‘ ( ♯ ‘ 𝑊 ) )  =  ( seq 1 (  +  ,  ( 𝐹  ∘  𝑔 ) ) ‘ ( ♯ ‘ ( 𝐹  supp   0  ) ) ) ) ) ) | 
						
							| 97 |  | eqeq2 | ⊢ ( 𝑥  =  ( seq 1 (  +  ,  ( 𝐹  ∘  ( 𝐻  ∘  𝑓 ) ) ) ‘ ( ♯ ‘ 𝑊 ) )  →  ( ( 𝐺  Σg  𝐹 )  =  𝑥  ↔  ( 𝐺  Σg  𝐹 )  =  ( seq 1 (  +  ,  ( 𝐹  ∘  ( 𝐻  ∘  𝑓 ) ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 98 | 96 97 | bibi12d | ⊢ ( 𝑥  =  ( seq 1 (  +  ,  ( 𝐹  ∘  ( 𝐻  ∘  𝑓 ) ) ) ‘ ( ♯ ‘ 𝑊 ) )  →  ( ( ∃ 𝑔 ( 𝑔 : ( 1 ... ( ♯ ‘ ( 𝐹  supp   0  ) ) ) –1-1-onto→ ( 𝐹  supp   0  )  ∧  𝑥  =  ( seq 1 (  +  ,  ( 𝐹  ∘  𝑔 ) ) ‘ ( ♯ ‘ ( 𝐹  supp   0  ) ) ) )  ↔  ( 𝐺  Σg  𝐹 )  =  𝑥 )  ↔  ( ∃ 𝑔 ( 𝑔 : ( 1 ... ( ♯ ‘ ( 𝐹  supp   0  ) ) ) –1-1-onto→ ( 𝐹  supp   0  )  ∧  ( seq 1 (  +  ,  ( 𝐹  ∘  ( 𝐻  ∘  𝑓 ) ) ) ‘ ( ♯ ‘ 𝑊 ) )  =  ( seq 1 (  +  ,  ( 𝐹  ∘  𝑔 ) ) ‘ ( ♯ ‘ ( 𝐹  supp   0  ) ) ) )  ↔  ( 𝐺  Σg  𝐹 )  =  ( seq 1 (  +  ,  ( 𝐹  ∘  ( 𝐻  ∘  𝑓 ) ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ) ) | 
						
							| 99 | 93 98 | spcv | ⊢ ( ∀ 𝑥 ( ∃ 𝑔 ( 𝑔 : ( 1 ... ( ♯ ‘ ( 𝐹  supp   0  ) ) ) –1-1-onto→ ( 𝐹  supp   0  )  ∧  𝑥  =  ( seq 1 (  +  ,  ( 𝐹  ∘  𝑔 ) ) ‘ ( ♯ ‘ ( 𝐹  supp   0  ) ) ) )  ↔  ( 𝐺  Σg  𝐹 )  =  𝑥 )  →  ( ∃ 𝑔 ( 𝑔 : ( 1 ... ( ♯ ‘ ( 𝐹  supp   0  ) ) ) –1-1-onto→ ( 𝐹  supp   0  )  ∧  ( seq 1 (  +  ,  ( 𝐹  ∘  ( 𝐻  ∘  𝑓 ) ) ) ‘ ( ♯ ‘ 𝑊 ) )  =  ( seq 1 (  +  ,  ( 𝐹  ∘  𝑔 ) ) ‘ ( ♯ ‘ ( 𝐹  supp   0  ) ) ) )  ↔  ( 𝐺  Σg  𝐹 )  =  ( seq 1 (  +  ,  ( 𝐹  ∘  ( 𝐻  ∘  𝑓 ) ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 100 | 92 99 | syl | ⊢ ( ( ( 𝜑  ∧  𝑊  ≠  ∅ )  ∧  ( ¬  𝐴  ∈  ran  ...  ∧  𝑓  Isom   <  ,   <  ( ( 1 ... ( ♯ ‘ 𝑊 ) ) ,  𝑊 ) ) )  →  ( ∃ 𝑔 ( 𝑔 : ( 1 ... ( ♯ ‘ ( 𝐹  supp   0  ) ) ) –1-1-onto→ ( 𝐹  supp   0  )  ∧  ( seq 1 (  +  ,  ( 𝐹  ∘  ( 𝐻  ∘  𝑓 ) ) ) ‘ ( ♯ ‘ 𝑊 ) )  =  ( seq 1 (  +  ,  ( 𝐹  ∘  𝑔 ) ) ‘ ( ♯ ‘ ( 𝐹  supp   0  ) ) ) )  ↔  ( 𝐺  Σg  𝐹 )  =  ( seq 1 (  +  ,  ( 𝐹  ∘  ( 𝐻  ∘  𝑓 ) ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 101 | 59 100 | mpbid | ⊢ ( ( ( 𝜑  ∧  𝑊  ≠  ∅ )  ∧  ( ¬  𝐴  ∈  ran  ...  ∧  𝑓  Isom   <  ,   <  ( ( 1 ... ( ♯ ‘ 𝑊 ) ) ,  𝑊 ) ) )  →  ( 𝐺  Σg  𝐹 )  =  ( seq 1 (  +  ,  ( 𝐹  ∘  ( 𝐻  ∘  𝑓 ) ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) |