Step |
Hyp |
Ref |
Expression |
1 |
|
gsumvallem2.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
gsumvallem2.z |
⊢ 0 = ( 0g ‘ 𝐺 ) |
3 |
|
gsumvallem2.p |
⊢ + = ( +g ‘ 𝐺 ) |
4 |
|
gsumvallem2.o |
⊢ 𝑂 = { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) } |
5 |
1 2 3 4
|
mgmidsssn0 |
⊢ ( 𝐺 ∈ Mnd → 𝑂 ⊆ { 0 } ) |
6 |
1 2
|
mndidcl |
⊢ ( 𝐺 ∈ Mnd → 0 ∈ 𝐵 ) |
7 |
1 3 2
|
mndlrid |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑦 ∈ 𝐵 ) → ( ( 0 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 0 ) = 𝑦 ) ) |
8 |
7
|
ralrimiva |
⊢ ( 𝐺 ∈ Mnd → ∀ 𝑦 ∈ 𝐵 ( ( 0 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 0 ) = 𝑦 ) ) |
9 |
|
oveq1 |
⊢ ( 𝑥 = 0 → ( 𝑥 + 𝑦 ) = ( 0 + 𝑦 ) ) |
10 |
9
|
eqeq1d |
⊢ ( 𝑥 = 0 → ( ( 𝑥 + 𝑦 ) = 𝑦 ↔ ( 0 + 𝑦 ) = 𝑦 ) ) |
11 |
10
|
ovanraleqv |
⊢ ( 𝑥 = 0 → ( ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 𝑥 ) = 𝑦 ) ↔ ∀ 𝑦 ∈ 𝐵 ( ( 0 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 0 ) = 𝑦 ) ) ) |
12 |
11 4
|
elrab2 |
⊢ ( 0 ∈ 𝑂 ↔ ( 0 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ( ( 0 + 𝑦 ) = 𝑦 ∧ ( 𝑦 + 0 ) = 𝑦 ) ) ) |
13 |
6 8 12
|
sylanbrc |
⊢ ( 𝐺 ∈ Mnd → 0 ∈ 𝑂 ) |
14 |
13
|
snssd |
⊢ ( 𝐺 ∈ Mnd → { 0 } ⊆ 𝑂 ) |
15 |
5 14
|
eqssd |
⊢ ( 𝐺 ∈ Mnd → 𝑂 = { 0 } ) |