| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsumvsmul.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 2 |
|
gsumvsmul.s |
⊢ 𝑆 = ( Scalar ‘ 𝑅 ) |
| 3 |
|
gsumvsmul.k |
⊢ 𝐾 = ( Base ‘ 𝑆 ) |
| 4 |
|
gsumvsmul.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
| 5 |
|
gsumvsmul.p |
⊢ + = ( +g ‘ 𝑅 ) |
| 6 |
|
gsumvsmul.t |
⊢ · = ( ·𝑠 ‘ 𝑅 ) |
| 7 |
|
gsumvsmul.r |
⊢ ( 𝜑 → 𝑅 ∈ LMod ) |
| 8 |
|
gsumvsmul.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
| 9 |
|
gsumvsmul.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐾 ) |
| 10 |
|
gsumvsmul.y |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝑌 ∈ 𝐵 ) |
| 11 |
|
gsumvsmul.n |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ 𝑌 ) finSupp 0 ) |
| 12 |
|
lmodcmn |
⊢ ( 𝑅 ∈ LMod → 𝑅 ∈ CMnd ) |
| 13 |
7 12
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ CMnd ) |
| 14 |
|
cmnmnd |
⊢ ( 𝑅 ∈ CMnd → 𝑅 ∈ Mnd ) |
| 15 |
13 14
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Mnd ) |
| 16 |
1 2 6 3
|
lmodvsghm |
⊢ ( ( 𝑅 ∈ LMod ∧ 𝑋 ∈ 𝐾 ) → ( 𝑦 ∈ 𝐵 ↦ ( 𝑋 · 𝑦 ) ) ∈ ( 𝑅 GrpHom 𝑅 ) ) |
| 17 |
7 9 16
|
syl2anc |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐵 ↦ ( 𝑋 · 𝑦 ) ) ∈ ( 𝑅 GrpHom 𝑅 ) ) |
| 18 |
|
ghmmhm |
⊢ ( ( 𝑦 ∈ 𝐵 ↦ ( 𝑋 · 𝑦 ) ) ∈ ( 𝑅 GrpHom 𝑅 ) → ( 𝑦 ∈ 𝐵 ↦ ( 𝑋 · 𝑦 ) ) ∈ ( 𝑅 MndHom 𝑅 ) ) |
| 19 |
17 18
|
syl |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐵 ↦ ( 𝑋 · 𝑦 ) ) ∈ ( 𝑅 MndHom 𝑅 ) ) |
| 20 |
|
oveq2 |
⊢ ( 𝑦 = 𝑌 → ( 𝑋 · 𝑦 ) = ( 𝑋 · 𝑌 ) ) |
| 21 |
|
oveq2 |
⊢ ( 𝑦 = ( 𝑅 Σg ( 𝑘 ∈ 𝐴 ↦ 𝑌 ) ) → ( 𝑋 · 𝑦 ) = ( 𝑋 · ( 𝑅 Σg ( 𝑘 ∈ 𝐴 ↦ 𝑌 ) ) ) ) |
| 22 |
1 4 13 15 8 19 10 11 20 21
|
gsummhm2 |
⊢ ( 𝜑 → ( 𝑅 Σg ( 𝑘 ∈ 𝐴 ↦ ( 𝑋 · 𝑌 ) ) ) = ( 𝑋 · ( 𝑅 Σg ( 𝑘 ∈ 𝐴 ↦ 𝑌 ) ) ) ) |