Metamath Proof Explorer


Theorem gsumvsmul

Description: Pull a scalar multiplication out of a sum of vectors. This theorem properly generalizes gsummulc2 , since every ring is a left module over itself. (Contributed by Stefan O'Rear, 6-Feb-2015) (Revised by Mario Carneiro, 5-May-2015) (Revised by AV, 10-Jul-2019)

Ref Expression
Hypotheses gsumvsmul.b 𝐵 = ( Base ‘ 𝑅 )
gsumvsmul.s 𝑆 = ( Scalar ‘ 𝑅 )
gsumvsmul.k 𝐾 = ( Base ‘ 𝑆 )
gsumvsmul.z 0 = ( 0g𝑅 )
gsumvsmul.p + = ( +g𝑅 )
gsumvsmul.t · = ( ·𝑠𝑅 )
gsumvsmul.r ( 𝜑𝑅 ∈ LMod )
gsumvsmul.a ( 𝜑𝐴𝑉 )
gsumvsmul.x ( 𝜑𝑋𝐾 )
gsumvsmul.y ( ( 𝜑𝑘𝐴 ) → 𝑌𝐵 )
gsumvsmul.n ( 𝜑 → ( 𝑘𝐴𝑌 ) finSupp 0 )
Assertion gsumvsmul ( 𝜑 → ( 𝑅 Σg ( 𝑘𝐴 ↦ ( 𝑋 · 𝑌 ) ) ) = ( 𝑋 · ( 𝑅 Σg ( 𝑘𝐴𝑌 ) ) ) )

Proof

Step Hyp Ref Expression
1 gsumvsmul.b 𝐵 = ( Base ‘ 𝑅 )
2 gsumvsmul.s 𝑆 = ( Scalar ‘ 𝑅 )
3 gsumvsmul.k 𝐾 = ( Base ‘ 𝑆 )
4 gsumvsmul.z 0 = ( 0g𝑅 )
5 gsumvsmul.p + = ( +g𝑅 )
6 gsumvsmul.t · = ( ·𝑠𝑅 )
7 gsumvsmul.r ( 𝜑𝑅 ∈ LMod )
8 gsumvsmul.a ( 𝜑𝐴𝑉 )
9 gsumvsmul.x ( 𝜑𝑋𝐾 )
10 gsumvsmul.y ( ( 𝜑𝑘𝐴 ) → 𝑌𝐵 )
11 gsumvsmul.n ( 𝜑 → ( 𝑘𝐴𝑌 ) finSupp 0 )
12 lmodcmn ( 𝑅 ∈ LMod → 𝑅 ∈ CMnd )
13 7 12 syl ( 𝜑𝑅 ∈ CMnd )
14 cmnmnd ( 𝑅 ∈ CMnd → 𝑅 ∈ Mnd )
15 13 14 syl ( 𝜑𝑅 ∈ Mnd )
16 1 2 6 3 lmodvsghm ( ( 𝑅 ∈ LMod ∧ 𝑋𝐾 ) → ( 𝑦𝐵 ↦ ( 𝑋 · 𝑦 ) ) ∈ ( 𝑅 GrpHom 𝑅 ) )
17 7 9 16 syl2anc ( 𝜑 → ( 𝑦𝐵 ↦ ( 𝑋 · 𝑦 ) ) ∈ ( 𝑅 GrpHom 𝑅 ) )
18 ghmmhm ( ( 𝑦𝐵 ↦ ( 𝑋 · 𝑦 ) ) ∈ ( 𝑅 GrpHom 𝑅 ) → ( 𝑦𝐵 ↦ ( 𝑋 · 𝑦 ) ) ∈ ( 𝑅 MndHom 𝑅 ) )
19 17 18 syl ( 𝜑 → ( 𝑦𝐵 ↦ ( 𝑋 · 𝑦 ) ) ∈ ( 𝑅 MndHom 𝑅 ) )
20 oveq2 ( 𝑦 = 𝑌 → ( 𝑋 · 𝑦 ) = ( 𝑋 · 𝑌 ) )
21 oveq2 ( 𝑦 = ( 𝑅 Σg ( 𝑘𝐴𝑌 ) ) → ( 𝑋 · 𝑦 ) = ( 𝑋 · ( 𝑅 Σg ( 𝑘𝐴𝑌 ) ) ) )
22 1 4 13 15 8 19 10 11 20 21 gsummhm2 ( 𝜑 → ( 𝑅 Σg ( 𝑘𝐴 ↦ ( 𝑋 · 𝑌 ) ) ) = ( 𝑋 · ( 𝑅 Σg ( 𝑘𝐴𝑌 ) ) ) )