Metamath Proof Explorer


Theorem gsumwcl

Description: Closure of the composite of a word in a structure G . (Contributed by Stefan O'Rear, 15-Aug-2015)

Ref Expression
Hypothesis gsumwcl.b 𝐵 = ( Base ‘ 𝐺 )
Assertion gsumwcl ( ( 𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵 ) → ( 𝐺 Σg 𝑊 ) ∈ 𝐵 )

Proof

Step Hyp Ref Expression
1 gsumwcl.b 𝐵 = ( Base ‘ 𝐺 )
2 1 submid ( 𝐺 ∈ Mnd → 𝐵 ∈ ( SubMnd ‘ 𝐺 ) )
3 gsumwsubmcl ( ( 𝐵 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑊 ∈ Word 𝐵 ) → ( 𝐺 Σg 𝑊 ) ∈ 𝐵 )
4 2 3 sylan ( ( 𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵 ) → ( 𝐺 Σg 𝑊 ) ∈ 𝐵 )