Step |
Hyp |
Ref |
Expression |
1 |
|
gsumwmhm.b |
⊢ 𝐵 = ( Base ‘ 𝑀 ) |
2 |
|
oveq2 |
⊢ ( 𝑊 = ∅ → ( 𝑀 Σg 𝑊 ) = ( 𝑀 Σg ∅ ) ) |
3 |
|
eqid |
⊢ ( 0g ‘ 𝑀 ) = ( 0g ‘ 𝑀 ) |
4 |
3
|
gsum0 |
⊢ ( 𝑀 Σg ∅ ) = ( 0g ‘ 𝑀 ) |
5 |
2 4
|
eqtrdi |
⊢ ( 𝑊 = ∅ → ( 𝑀 Σg 𝑊 ) = ( 0g ‘ 𝑀 ) ) |
6 |
5
|
fveq2d |
⊢ ( 𝑊 = ∅ → ( 𝐻 ‘ ( 𝑀 Σg 𝑊 ) ) = ( 𝐻 ‘ ( 0g ‘ 𝑀 ) ) ) |
7 |
|
coeq2 |
⊢ ( 𝑊 = ∅ → ( 𝐻 ∘ 𝑊 ) = ( 𝐻 ∘ ∅ ) ) |
8 |
|
co02 |
⊢ ( 𝐻 ∘ ∅ ) = ∅ |
9 |
7 8
|
eqtrdi |
⊢ ( 𝑊 = ∅ → ( 𝐻 ∘ 𝑊 ) = ∅ ) |
10 |
9
|
oveq2d |
⊢ ( 𝑊 = ∅ → ( 𝑁 Σg ( 𝐻 ∘ 𝑊 ) ) = ( 𝑁 Σg ∅ ) ) |
11 |
|
eqid |
⊢ ( 0g ‘ 𝑁 ) = ( 0g ‘ 𝑁 ) |
12 |
11
|
gsum0 |
⊢ ( 𝑁 Σg ∅ ) = ( 0g ‘ 𝑁 ) |
13 |
10 12
|
eqtrdi |
⊢ ( 𝑊 = ∅ → ( 𝑁 Σg ( 𝐻 ∘ 𝑊 ) ) = ( 0g ‘ 𝑁 ) ) |
14 |
6 13
|
eqeq12d |
⊢ ( 𝑊 = ∅ → ( ( 𝐻 ‘ ( 𝑀 Σg 𝑊 ) ) = ( 𝑁 Σg ( 𝐻 ∘ 𝑊 ) ) ↔ ( 𝐻 ‘ ( 0g ‘ 𝑀 ) ) = ( 0g ‘ 𝑁 ) ) ) |
15 |
|
mhmrcl1 |
⊢ ( 𝐻 ∈ ( 𝑀 MndHom 𝑁 ) → 𝑀 ∈ Mnd ) |
16 |
15
|
ad2antrr |
⊢ ( ( ( 𝐻 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑊 ∈ Word 𝐵 ) ∧ 𝑊 ≠ ∅ ) → 𝑀 ∈ Mnd ) |
17 |
|
eqid |
⊢ ( +g ‘ 𝑀 ) = ( +g ‘ 𝑀 ) |
18 |
1 17
|
mndcl |
⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝐵 ) |
19 |
18
|
3expb |
⊢ ( ( 𝑀 ∈ Mnd ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝐵 ) |
20 |
16 19
|
sylan |
⊢ ( ( ( ( 𝐻 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑊 ∈ Word 𝐵 ) ∧ 𝑊 ≠ ∅ ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝐵 ) |
21 |
|
wrdf |
⊢ ( 𝑊 ∈ Word 𝐵 → 𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝐵 ) |
22 |
21
|
ad2antlr |
⊢ ( ( ( 𝐻 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑊 ∈ Word 𝐵 ) ∧ 𝑊 ≠ ∅ ) → 𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝐵 ) |
23 |
|
wrdfin |
⊢ ( 𝑊 ∈ Word 𝐵 → 𝑊 ∈ Fin ) |
24 |
23
|
adantl |
⊢ ( ( 𝐻 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑊 ∈ Word 𝐵 ) → 𝑊 ∈ Fin ) |
25 |
|
hashnncl |
⊢ ( 𝑊 ∈ Fin → ( ( ♯ ‘ 𝑊 ) ∈ ℕ ↔ 𝑊 ≠ ∅ ) ) |
26 |
24 25
|
syl |
⊢ ( ( 𝐻 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑊 ∈ Word 𝐵 ) → ( ( ♯ ‘ 𝑊 ) ∈ ℕ ↔ 𝑊 ≠ ∅ ) ) |
27 |
26
|
biimpar |
⊢ ( ( ( 𝐻 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑊 ∈ Word 𝐵 ) ∧ 𝑊 ≠ ∅ ) → ( ♯ ‘ 𝑊 ) ∈ ℕ ) |
28 |
27
|
nnzd |
⊢ ( ( ( 𝐻 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑊 ∈ Word 𝐵 ) ∧ 𝑊 ≠ ∅ ) → ( ♯ ‘ 𝑊 ) ∈ ℤ ) |
29 |
|
fzoval |
⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℤ → ( 0 ..^ ( ♯ ‘ 𝑊 ) ) = ( 0 ... ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) |
30 |
28 29
|
syl |
⊢ ( ( ( 𝐻 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑊 ∈ Word 𝐵 ) ∧ 𝑊 ≠ ∅ ) → ( 0 ..^ ( ♯ ‘ 𝑊 ) ) = ( 0 ... ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) |
31 |
30
|
feq2d |
⊢ ( ( ( 𝐻 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑊 ∈ Word 𝐵 ) ∧ 𝑊 ≠ ∅ ) → ( 𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝐵 ↔ 𝑊 : ( 0 ... ( ( ♯ ‘ 𝑊 ) − 1 ) ) ⟶ 𝐵 ) ) |
32 |
22 31
|
mpbid |
⊢ ( ( ( 𝐻 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑊 ∈ Word 𝐵 ) ∧ 𝑊 ≠ ∅ ) → 𝑊 : ( 0 ... ( ( ♯ ‘ 𝑊 ) − 1 ) ) ⟶ 𝐵 ) |
33 |
32
|
ffvelrnda |
⊢ ( ( ( ( 𝐻 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑊 ∈ Word 𝐵 ) ∧ 𝑊 ≠ ∅ ) ∧ 𝑥 ∈ ( 0 ... ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) → ( 𝑊 ‘ 𝑥 ) ∈ 𝐵 ) |
34 |
|
nnm1nn0 |
⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ → ( ( ♯ ‘ 𝑊 ) − 1 ) ∈ ℕ0 ) |
35 |
27 34
|
syl |
⊢ ( ( ( 𝐻 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑊 ∈ Word 𝐵 ) ∧ 𝑊 ≠ ∅ ) → ( ( ♯ ‘ 𝑊 ) − 1 ) ∈ ℕ0 ) |
36 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
37 |
35 36
|
eleqtrdi |
⊢ ( ( ( 𝐻 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑊 ∈ Word 𝐵 ) ∧ 𝑊 ≠ ∅ ) → ( ( ♯ ‘ 𝑊 ) − 1 ) ∈ ( ℤ≥ ‘ 0 ) ) |
38 |
|
eqid |
⊢ ( +g ‘ 𝑁 ) = ( +g ‘ 𝑁 ) |
39 |
1 17 38
|
mhmlin |
⊢ ( ( 𝐻 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝐻 ‘ ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ) = ( ( 𝐻 ‘ 𝑥 ) ( +g ‘ 𝑁 ) ( 𝐻 ‘ 𝑦 ) ) ) |
40 |
39
|
3expb |
⊢ ( ( 𝐻 ∈ ( 𝑀 MndHom 𝑁 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐻 ‘ ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ) = ( ( 𝐻 ‘ 𝑥 ) ( +g ‘ 𝑁 ) ( 𝐻 ‘ 𝑦 ) ) ) |
41 |
40
|
ad4ant14 |
⊢ ( ( ( ( 𝐻 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑊 ∈ Word 𝐵 ) ∧ 𝑊 ≠ ∅ ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐻 ‘ ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ) = ( ( 𝐻 ‘ 𝑥 ) ( +g ‘ 𝑁 ) ( 𝐻 ‘ 𝑦 ) ) ) |
42 |
32
|
ffnd |
⊢ ( ( ( 𝐻 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑊 ∈ Word 𝐵 ) ∧ 𝑊 ≠ ∅ ) → 𝑊 Fn ( 0 ... ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) |
43 |
|
fvco2 |
⊢ ( ( 𝑊 Fn ( 0 ... ( ( ♯ ‘ 𝑊 ) − 1 ) ) ∧ 𝑥 ∈ ( 0 ... ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) → ( ( 𝐻 ∘ 𝑊 ) ‘ 𝑥 ) = ( 𝐻 ‘ ( 𝑊 ‘ 𝑥 ) ) ) |
44 |
42 43
|
sylan |
⊢ ( ( ( ( 𝐻 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑊 ∈ Word 𝐵 ) ∧ 𝑊 ≠ ∅ ) ∧ 𝑥 ∈ ( 0 ... ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) → ( ( 𝐻 ∘ 𝑊 ) ‘ 𝑥 ) = ( 𝐻 ‘ ( 𝑊 ‘ 𝑥 ) ) ) |
45 |
44
|
eqcomd |
⊢ ( ( ( ( 𝐻 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑊 ∈ Word 𝐵 ) ∧ 𝑊 ≠ ∅ ) ∧ 𝑥 ∈ ( 0 ... ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) → ( 𝐻 ‘ ( 𝑊 ‘ 𝑥 ) ) = ( ( 𝐻 ∘ 𝑊 ) ‘ 𝑥 ) ) |
46 |
20 33 37 41 45
|
seqhomo |
⊢ ( ( ( 𝐻 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑊 ∈ Word 𝐵 ) ∧ 𝑊 ≠ ∅ ) → ( 𝐻 ‘ ( seq 0 ( ( +g ‘ 𝑀 ) , 𝑊 ) ‘ ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) = ( seq 0 ( ( +g ‘ 𝑁 ) , ( 𝐻 ∘ 𝑊 ) ) ‘ ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) |
47 |
1 17 16 37 32
|
gsumval2 |
⊢ ( ( ( 𝐻 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑊 ∈ Word 𝐵 ) ∧ 𝑊 ≠ ∅ ) → ( 𝑀 Σg 𝑊 ) = ( seq 0 ( ( +g ‘ 𝑀 ) , 𝑊 ) ‘ ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) |
48 |
47
|
fveq2d |
⊢ ( ( ( 𝐻 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑊 ∈ Word 𝐵 ) ∧ 𝑊 ≠ ∅ ) → ( 𝐻 ‘ ( 𝑀 Σg 𝑊 ) ) = ( 𝐻 ‘ ( seq 0 ( ( +g ‘ 𝑀 ) , 𝑊 ) ‘ ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) ) |
49 |
|
eqid |
⊢ ( Base ‘ 𝑁 ) = ( Base ‘ 𝑁 ) |
50 |
|
mhmrcl2 |
⊢ ( 𝐻 ∈ ( 𝑀 MndHom 𝑁 ) → 𝑁 ∈ Mnd ) |
51 |
50
|
ad2antrr |
⊢ ( ( ( 𝐻 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑊 ∈ Word 𝐵 ) ∧ 𝑊 ≠ ∅ ) → 𝑁 ∈ Mnd ) |
52 |
1 49
|
mhmf |
⊢ ( 𝐻 ∈ ( 𝑀 MndHom 𝑁 ) → 𝐻 : 𝐵 ⟶ ( Base ‘ 𝑁 ) ) |
53 |
52
|
ad2antrr |
⊢ ( ( ( 𝐻 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑊 ∈ Word 𝐵 ) ∧ 𝑊 ≠ ∅ ) → 𝐻 : 𝐵 ⟶ ( Base ‘ 𝑁 ) ) |
54 |
|
fco |
⊢ ( ( 𝐻 : 𝐵 ⟶ ( Base ‘ 𝑁 ) ∧ 𝑊 : ( 0 ... ( ( ♯ ‘ 𝑊 ) − 1 ) ) ⟶ 𝐵 ) → ( 𝐻 ∘ 𝑊 ) : ( 0 ... ( ( ♯ ‘ 𝑊 ) − 1 ) ) ⟶ ( Base ‘ 𝑁 ) ) |
55 |
53 32 54
|
syl2anc |
⊢ ( ( ( 𝐻 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑊 ∈ Word 𝐵 ) ∧ 𝑊 ≠ ∅ ) → ( 𝐻 ∘ 𝑊 ) : ( 0 ... ( ( ♯ ‘ 𝑊 ) − 1 ) ) ⟶ ( Base ‘ 𝑁 ) ) |
56 |
49 38 51 37 55
|
gsumval2 |
⊢ ( ( ( 𝐻 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑊 ∈ Word 𝐵 ) ∧ 𝑊 ≠ ∅ ) → ( 𝑁 Σg ( 𝐻 ∘ 𝑊 ) ) = ( seq 0 ( ( +g ‘ 𝑁 ) , ( 𝐻 ∘ 𝑊 ) ) ‘ ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) |
57 |
46 48 56
|
3eqtr4d |
⊢ ( ( ( 𝐻 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑊 ∈ Word 𝐵 ) ∧ 𝑊 ≠ ∅ ) → ( 𝐻 ‘ ( 𝑀 Σg 𝑊 ) ) = ( 𝑁 Σg ( 𝐻 ∘ 𝑊 ) ) ) |
58 |
3 11
|
mhm0 |
⊢ ( 𝐻 ∈ ( 𝑀 MndHom 𝑁 ) → ( 𝐻 ‘ ( 0g ‘ 𝑀 ) ) = ( 0g ‘ 𝑁 ) ) |
59 |
58
|
adantr |
⊢ ( ( 𝐻 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑊 ∈ Word 𝐵 ) → ( 𝐻 ‘ ( 0g ‘ 𝑀 ) ) = ( 0g ‘ 𝑁 ) ) |
60 |
14 57 59
|
pm2.61ne |
⊢ ( ( 𝐻 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑊 ∈ Word 𝐵 ) → ( 𝐻 ‘ ( 𝑀 Σg 𝑊 ) ) = ( 𝑁 Σg ( 𝐻 ∘ 𝑊 ) ) ) |