Step |
Hyp |
Ref |
Expression |
1 |
|
gsumwrev.b |
⊢ 𝐵 = ( Base ‘ 𝑀 ) |
2 |
|
gsumwrev.o |
⊢ 𝑂 = ( oppg ‘ 𝑀 ) |
3 |
|
oveq2 |
⊢ ( 𝑥 = ∅ → ( 𝑂 Σg 𝑥 ) = ( 𝑂 Σg ∅ ) ) |
4 |
|
fveq2 |
⊢ ( 𝑥 = ∅ → ( reverse ‘ 𝑥 ) = ( reverse ‘ ∅ ) ) |
5 |
|
rev0 |
⊢ ( reverse ‘ ∅ ) = ∅ |
6 |
4 5
|
eqtrdi |
⊢ ( 𝑥 = ∅ → ( reverse ‘ 𝑥 ) = ∅ ) |
7 |
6
|
oveq2d |
⊢ ( 𝑥 = ∅ → ( 𝑀 Σg ( reverse ‘ 𝑥 ) ) = ( 𝑀 Σg ∅ ) ) |
8 |
3 7
|
eqeq12d |
⊢ ( 𝑥 = ∅ → ( ( 𝑂 Σg 𝑥 ) = ( 𝑀 Σg ( reverse ‘ 𝑥 ) ) ↔ ( 𝑂 Σg ∅ ) = ( 𝑀 Σg ∅ ) ) ) |
9 |
8
|
imbi2d |
⊢ ( 𝑥 = ∅ → ( ( 𝑀 ∈ Mnd → ( 𝑂 Σg 𝑥 ) = ( 𝑀 Σg ( reverse ‘ 𝑥 ) ) ) ↔ ( 𝑀 ∈ Mnd → ( 𝑂 Σg ∅ ) = ( 𝑀 Σg ∅ ) ) ) ) |
10 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝑂 Σg 𝑥 ) = ( 𝑂 Σg 𝑦 ) ) |
11 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( reverse ‘ 𝑥 ) = ( reverse ‘ 𝑦 ) ) |
12 |
11
|
oveq2d |
⊢ ( 𝑥 = 𝑦 → ( 𝑀 Σg ( reverse ‘ 𝑥 ) ) = ( 𝑀 Σg ( reverse ‘ 𝑦 ) ) ) |
13 |
10 12
|
eqeq12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑂 Σg 𝑥 ) = ( 𝑀 Σg ( reverse ‘ 𝑥 ) ) ↔ ( 𝑂 Σg 𝑦 ) = ( 𝑀 Σg ( reverse ‘ 𝑦 ) ) ) ) |
14 |
13
|
imbi2d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑀 ∈ Mnd → ( 𝑂 Σg 𝑥 ) = ( 𝑀 Σg ( reverse ‘ 𝑥 ) ) ) ↔ ( 𝑀 ∈ Mnd → ( 𝑂 Σg 𝑦 ) = ( 𝑀 Σg ( reverse ‘ 𝑦 ) ) ) ) ) |
15 |
|
oveq2 |
⊢ ( 𝑥 = ( 𝑦 ++ 〈“ 𝑧 ”〉 ) → ( 𝑂 Σg 𝑥 ) = ( 𝑂 Σg ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ) ) |
16 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝑦 ++ 〈“ 𝑧 ”〉 ) → ( reverse ‘ 𝑥 ) = ( reverse ‘ ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ) ) |
17 |
16
|
oveq2d |
⊢ ( 𝑥 = ( 𝑦 ++ 〈“ 𝑧 ”〉 ) → ( 𝑀 Σg ( reverse ‘ 𝑥 ) ) = ( 𝑀 Σg ( reverse ‘ ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ) ) ) |
18 |
15 17
|
eqeq12d |
⊢ ( 𝑥 = ( 𝑦 ++ 〈“ 𝑧 ”〉 ) → ( ( 𝑂 Σg 𝑥 ) = ( 𝑀 Σg ( reverse ‘ 𝑥 ) ) ↔ ( 𝑂 Σg ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ) = ( 𝑀 Σg ( reverse ‘ ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ) ) ) ) |
19 |
18
|
imbi2d |
⊢ ( 𝑥 = ( 𝑦 ++ 〈“ 𝑧 ”〉 ) → ( ( 𝑀 ∈ Mnd → ( 𝑂 Σg 𝑥 ) = ( 𝑀 Σg ( reverse ‘ 𝑥 ) ) ) ↔ ( 𝑀 ∈ Mnd → ( 𝑂 Σg ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ) = ( 𝑀 Σg ( reverse ‘ ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ) ) ) ) ) |
20 |
|
oveq2 |
⊢ ( 𝑥 = 𝑊 → ( 𝑂 Σg 𝑥 ) = ( 𝑂 Σg 𝑊 ) ) |
21 |
|
fveq2 |
⊢ ( 𝑥 = 𝑊 → ( reverse ‘ 𝑥 ) = ( reverse ‘ 𝑊 ) ) |
22 |
21
|
oveq2d |
⊢ ( 𝑥 = 𝑊 → ( 𝑀 Σg ( reverse ‘ 𝑥 ) ) = ( 𝑀 Σg ( reverse ‘ 𝑊 ) ) ) |
23 |
20 22
|
eqeq12d |
⊢ ( 𝑥 = 𝑊 → ( ( 𝑂 Σg 𝑥 ) = ( 𝑀 Σg ( reverse ‘ 𝑥 ) ) ↔ ( 𝑂 Σg 𝑊 ) = ( 𝑀 Σg ( reverse ‘ 𝑊 ) ) ) ) |
24 |
23
|
imbi2d |
⊢ ( 𝑥 = 𝑊 → ( ( 𝑀 ∈ Mnd → ( 𝑂 Σg 𝑥 ) = ( 𝑀 Σg ( reverse ‘ 𝑥 ) ) ) ↔ ( 𝑀 ∈ Mnd → ( 𝑂 Σg 𝑊 ) = ( 𝑀 Σg ( reverse ‘ 𝑊 ) ) ) ) ) |
25 |
|
eqid |
⊢ ( 0g ‘ 𝑀 ) = ( 0g ‘ 𝑀 ) |
26 |
2 25
|
oppgid |
⊢ ( 0g ‘ 𝑀 ) = ( 0g ‘ 𝑂 ) |
27 |
26
|
gsum0 |
⊢ ( 𝑂 Σg ∅ ) = ( 0g ‘ 𝑀 ) |
28 |
25
|
gsum0 |
⊢ ( 𝑀 Σg ∅ ) = ( 0g ‘ 𝑀 ) |
29 |
27 28
|
eqtr4i |
⊢ ( 𝑂 Σg ∅ ) = ( 𝑀 Σg ∅ ) |
30 |
29
|
a1i |
⊢ ( 𝑀 ∈ Mnd → ( 𝑂 Σg ∅ ) = ( 𝑀 Σg ∅ ) ) |
31 |
|
oveq2 |
⊢ ( ( 𝑂 Σg 𝑦 ) = ( 𝑀 Σg ( reverse ‘ 𝑦 ) ) → ( 𝑧 ( +g ‘ 𝑀 ) ( 𝑂 Σg 𝑦 ) ) = ( 𝑧 ( +g ‘ 𝑀 ) ( 𝑀 Σg ( reverse ‘ 𝑦 ) ) ) ) |
32 |
2
|
oppgmnd |
⊢ ( 𝑀 ∈ Mnd → 𝑂 ∈ Mnd ) |
33 |
32
|
adantr |
⊢ ( ( 𝑀 ∈ Mnd ∧ ( 𝑦 ∈ Word 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → 𝑂 ∈ Mnd ) |
34 |
|
simprl |
⊢ ( ( 𝑀 ∈ Mnd ∧ ( 𝑦 ∈ Word 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → 𝑦 ∈ Word 𝐵 ) |
35 |
|
simprr |
⊢ ( ( 𝑀 ∈ Mnd ∧ ( 𝑦 ∈ Word 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → 𝑧 ∈ 𝐵 ) |
36 |
35
|
s1cld |
⊢ ( ( 𝑀 ∈ Mnd ∧ ( 𝑦 ∈ Word 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → 〈“ 𝑧 ”〉 ∈ Word 𝐵 ) |
37 |
2 1
|
oppgbas |
⊢ 𝐵 = ( Base ‘ 𝑂 ) |
38 |
|
eqid |
⊢ ( +g ‘ 𝑂 ) = ( +g ‘ 𝑂 ) |
39 |
37 38
|
gsumccat |
⊢ ( ( 𝑂 ∈ Mnd ∧ 𝑦 ∈ Word 𝐵 ∧ 〈“ 𝑧 ”〉 ∈ Word 𝐵 ) → ( 𝑂 Σg ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ) = ( ( 𝑂 Σg 𝑦 ) ( +g ‘ 𝑂 ) ( 𝑂 Σg 〈“ 𝑧 ”〉 ) ) ) |
40 |
33 34 36 39
|
syl3anc |
⊢ ( ( 𝑀 ∈ Mnd ∧ ( 𝑦 ∈ Word 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑂 Σg ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ) = ( ( 𝑂 Σg 𝑦 ) ( +g ‘ 𝑂 ) ( 𝑂 Σg 〈“ 𝑧 ”〉 ) ) ) |
41 |
37
|
gsumws1 |
⊢ ( 𝑧 ∈ 𝐵 → ( 𝑂 Σg 〈“ 𝑧 ”〉 ) = 𝑧 ) |
42 |
41
|
ad2antll |
⊢ ( ( 𝑀 ∈ Mnd ∧ ( 𝑦 ∈ Word 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑂 Σg 〈“ 𝑧 ”〉 ) = 𝑧 ) |
43 |
42
|
oveq2d |
⊢ ( ( 𝑀 ∈ Mnd ∧ ( 𝑦 ∈ Word 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 𝑂 Σg 𝑦 ) ( +g ‘ 𝑂 ) ( 𝑂 Σg 〈“ 𝑧 ”〉 ) ) = ( ( 𝑂 Σg 𝑦 ) ( +g ‘ 𝑂 ) 𝑧 ) ) |
44 |
|
eqid |
⊢ ( +g ‘ 𝑀 ) = ( +g ‘ 𝑀 ) |
45 |
44 2 38
|
oppgplus |
⊢ ( ( 𝑂 Σg 𝑦 ) ( +g ‘ 𝑂 ) 𝑧 ) = ( 𝑧 ( +g ‘ 𝑀 ) ( 𝑂 Σg 𝑦 ) ) |
46 |
43 45
|
eqtrdi |
⊢ ( ( 𝑀 ∈ Mnd ∧ ( 𝑦 ∈ Word 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 𝑂 Σg 𝑦 ) ( +g ‘ 𝑂 ) ( 𝑂 Σg 〈“ 𝑧 ”〉 ) ) = ( 𝑧 ( +g ‘ 𝑀 ) ( 𝑂 Σg 𝑦 ) ) ) |
47 |
40 46
|
eqtrd |
⊢ ( ( 𝑀 ∈ Mnd ∧ ( 𝑦 ∈ Word 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑂 Σg ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ) = ( 𝑧 ( +g ‘ 𝑀 ) ( 𝑂 Σg 𝑦 ) ) ) |
48 |
|
revccat |
⊢ ( ( 𝑦 ∈ Word 𝐵 ∧ 〈“ 𝑧 ”〉 ∈ Word 𝐵 ) → ( reverse ‘ ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ) = ( ( reverse ‘ 〈“ 𝑧 ”〉 ) ++ ( reverse ‘ 𝑦 ) ) ) |
49 |
34 36 48
|
syl2anc |
⊢ ( ( 𝑀 ∈ Mnd ∧ ( 𝑦 ∈ Word 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( reverse ‘ ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ) = ( ( reverse ‘ 〈“ 𝑧 ”〉 ) ++ ( reverse ‘ 𝑦 ) ) ) |
50 |
|
revs1 |
⊢ ( reverse ‘ 〈“ 𝑧 ”〉 ) = 〈“ 𝑧 ”〉 |
51 |
50
|
oveq1i |
⊢ ( ( reverse ‘ 〈“ 𝑧 ”〉 ) ++ ( reverse ‘ 𝑦 ) ) = ( 〈“ 𝑧 ”〉 ++ ( reverse ‘ 𝑦 ) ) |
52 |
49 51
|
eqtrdi |
⊢ ( ( 𝑀 ∈ Mnd ∧ ( 𝑦 ∈ Word 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( reverse ‘ ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ) = ( 〈“ 𝑧 ”〉 ++ ( reverse ‘ 𝑦 ) ) ) |
53 |
52
|
oveq2d |
⊢ ( ( 𝑀 ∈ Mnd ∧ ( 𝑦 ∈ Word 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑀 Σg ( reverse ‘ ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ) ) = ( 𝑀 Σg ( 〈“ 𝑧 ”〉 ++ ( reverse ‘ 𝑦 ) ) ) ) |
54 |
|
simpl |
⊢ ( ( 𝑀 ∈ Mnd ∧ ( 𝑦 ∈ Word 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → 𝑀 ∈ Mnd ) |
55 |
|
revcl |
⊢ ( 𝑦 ∈ Word 𝐵 → ( reverse ‘ 𝑦 ) ∈ Word 𝐵 ) |
56 |
55
|
ad2antrl |
⊢ ( ( 𝑀 ∈ Mnd ∧ ( 𝑦 ∈ Word 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( reverse ‘ 𝑦 ) ∈ Word 𝐵 ) |
57 |
1 44
|
gsumccat |
⊢ ( ( 𝑀 ∈ Mnd ∧ 〈“ 𝑧 ”〉 ∈ Word 𝐵 ∧ ( reverse ‘ 𝑦 ) ∈ Word 𝐵 ) → ( 𝑀 Σg ( 〈“ 𝑧 ”〉 ++ ( reverse ‘ 𝑦 ) ) ) = ( ( 𝑀 Σg 〈“ 𝑧 ”〉 ) ( +g ‘ 𝑀 ) ( 𝑀 Σg ( reverse ‘ 𝑦 ) ) ) ) |
58 |
54 36 56 57
|
syl3anc |
⊢ ( ( 𝑀 ∈ Mnd ∧ ( 𝑦 ∈ Word 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑀 Σg ( 〈“ 𝑧 ”〉 ++ ( reverse ‘ 𝑦 ) ) ) = ( ( 𝑀 Σg 〈“ 𝑧 ”〉 ) ( +g ‘ 𝑀 ) ( 𝑀 Σg ( reverse ‘ 𝑦 ) ) ) ) |
59 |
1
|
gsumws1 |
⊢ ( 𝑧 ∈ 𝐵 → ( 𝑀 Σg 〈“ 𝑧 ”〉 ) = 𝑧 ) |
60 |
59
|
ad2antll |
⊢ ( ( 𝑀 ∈ Mnd ∧ ( 𝑦 ∈ Word 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑀 Σg 〈“ 𝑧 ”〉 ) = 𝑧 ) |
61 |
60
|
oveq1d |
⊢ ( ( 𝑀 ∈ Mnd ∧ ( 𝑦 ∈ Word 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 𝑀 Σg 〈“ 𝑧 ”〉 ) ( +g ‘ 𝑀 ) ( 𝑀 Σg ( reverse ‘ 𝑦 ) ) ) = ( 𝑧 ( +g ‘ 𝑀 ) ( 𝑀 Σg ( reverse ‘ 𝑦 ) ) ) ) |
62 |
53 58 61
|
3eqtrd |
⊢ ( ( 𝑀 ∈ Mnd ∧ ( 𝑦 ∈ Word 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑀 Σg ( reverse ‘ ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ) ) = ( 𝑧 ( +g ‘ 𝑀 ) ( 𝑀 Σg ( reverse ‘ 𝑦 ) ) ) ) |
63 |
47 62
|
eqeq12d |
⊢ ( ( 𝑀 ∈ Mnd ∧ ( 𝑦 ∈ Word 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 𝑂 Σg ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ) = ( 𝑀 Σg ( reverse ‘ ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ) ) ↔ ( 𝑧 ( +g ‘ 𝑀 ) ( 𝑂 Σg 𝑦 ) ) = ( 𝑧 ( +g ‘ 𝑀 ) ( 𝑀 Σg ( reverse ‘ 𝑦 ) ) ) ) ) |
64 |
31 63
|
syl5ibr |
⊢ ( ( 𝑀 ∈ Mnd ∧ ( 𝑦 ∈ Word 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 𝑂 Σg 𝑦 ) = ( 𝑀 Σg ( reverse ‘ 𝑦 ) ) → ( 𝑂 Σg ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ) = ( 𝑀 Σg ( reverse ‘ ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ) ) ) ) |
65 |
64
|
expcom |
⊢ ( ( 𝑦 ∈ Word 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( 𝑀 ∈ Mnd → ( ( 𝑂 Σg 𝑦 ) = ( 𝑀 Σg ( reverse ‘ 𝑦 ) ) → ( 𝑂 Σg ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ) = ( 𝑀 Σg ( reverse ‘ ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ) ) ) ) ) |
66 |
65
|
a2d |
⊢ ( ( 𝑦 ∈ Word 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( ( 𝑀 ∈ Mnd → ( 𝑂 Σg 𝑦 ) = ( 𝑀 Σg ( reverse ‘ 𝑦 ) ) ) → ( 𝑀 ∈ Mnd → ( 𝑂 Σg ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ) = ( 𝑀 Σg ( reverse ‘ ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ) ) ) ) ) |
67 |
9 14 19 24 30 66
|
wrdind |
⊢ ( 𝑊 ∈ Word 𝐵 → ( 𝑀 ∈ Mnd → ( 𝑂 Σg 𝑊 ) = ( 𝑀 Σg ( reverse ‘ 𝑊 ) ) ) ) |
68 |
67
|
impcom |
⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵 ) → ( 𝑂 Σg 𝑊 ) = ( 𝑀 Σg ( reverse ‘ 𝑊 ) ) ) |