| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gsumwspan.b | ⊢ 𝐵  =  ( Base ‘ 𝑀 ) | 
						
							| 2 |  | gsumwspan.k | ⊢ 𝐾  =  ( mrCls ‘ ( SubMnd ‘ 𝑀 ) ) | 
						
							| 3 | 1 | submacs | ⊢ ( 𝑀  ∈  Mnd  →  ( SubMnd ‘ 𝑀 )  ∈  ( ACS ‘ 𝐵 ) ) | 
						
							| 4 | 3 | acsmred | ⊢ ( 𝑀  ∈  Mnd  →  ( SubMnd ‘ 𝑀 )  ∈  ( Moore ‘ 𝐵 ) ) | 
						
							| 5 | 4 | adantr | ⊢ ( ( 𝑀  ∈  Mnd  ∧  𝐺  ⊆  𝐵 )  →  ( SubMnd ‘ 𝑀 )  ∈  ( Moore ‘ 𝐵 ) ) | 
						
							| 6 |  | simpr | ⊢ ( ( ( 𝑀  ∈  Mnd  ∧  𝐺  ⊆  𝐵 )  ∧  𝑥  ∈  𝐺 )  →  𝑥  ∈  𝐺 ) | 
						
							| 7 | 6 | s1cld | ⊢ ( ( ( 𝑀  ∈  Mnd  ∧  𝐺  ⊆  𝐵 )  ∧  𝑥  ∈  𝐺 )  →  〈“ 𝑥 ”〉  ∈  Word  𝐺 ) | 
						
							| 8 |  | ssel2 | ⊢ ( ( 𝐺  ⊆  𝐵  ∧  𝑥  ∈  𝐺 )  →  𝑥  ∈  𝐵 ) | 
						
							| 9 | 8 | adantll | ⊢ ( ( ( 𝑀  ∈  Mnd  ∧  𝐺  ⊆  𝐵 )  ∧  𝑥  ∈  𝐺 )  →  𝑥  ∈  𝐵 ) | 
						
							| 10 | 1 | gsumws1 | ⊢ ( 𝑥  ∈  𝐵  →  ( 𝑀  Σg  〈“ 𝑥 ”〉 )  =  𝑥 ) | 
						
							| 11 | 9 10 | syl | ⊢ ( ( ( 𝑀  ∈  Mnd  ∧  𝐺  ⊆  𝐵 )  ∧  𝑥  ∈  𝐺 )  →  ( 𝑀  Σg  〈“ 𝑥 ”〉 )  =  𝑥 ) | 
						
							| 12 | 11 | eqcomd | ⊢ ( ( ( 𝑀  ∈  Mnd  ∧  𝐺  ⊆  𝐵 )  ∧  𝑥  ∈  𝐺 )  →  𝑥  =  ( 𝑀  Σg  〈“ 𝑥 ”〉 ) ) | 
						
							| 13 |  | oveq2 | ⊢ ( 𝑤  =  〈“ 𝑥 ”〉  →  ( 𝑀  Σg  𝑤 )  =  ( 𝑀  Σg  〈“ 𝑥 ”〉 ) ) | 
						
							| 14 | 13 | rspceeqv | ⊢ ( ( 〈“ 𝑥 ”〉  ∈  Word  𝐺  ∧  𝑥  =  ( 𝑀  Σg  〈“ 𝑥 ”〉 ) )  →  ∃ 𝑤  ∈  Word  𝐺 𝑥  =  ( 𝑀  Σg  𝑤 ) ) | 
						
							| 15 | 7 12 14 | syl2anc | ⊢ ( ( ( 𝑀  ∈  Mnd  ∧  𝐺  ⊆  𝐵 )  ∧  𝑥  ∈  𝐺 )  →  ∃ 𝑤  ∈  Word  𝐺 𝑥  =  ( 𝑀  Σg  𝑤 ) ) | 
						
							| 16 |  | eqid | ⊢ ( 𝑤  ∈  Word  𝐺  ↦  ( 𝑀  Σg  𝑤 ) )  =  ( 𝑤  ∈  Word  𝐺  ↦  ( 𝑀  Σg  𝑤 ) ) | 
						
							| 17 | 16 | elrnmpt | ⊢ ( 𝑥  ∈  V  →  ( 𝑥  ∈  ran  ( 𝑤  ∈  Word  𝐺  ↦  ( 𝑀  Σg  𝑤 ) )  ↔  ∃ 𝑤  ∈  Word  𝐺 𝑥  =  ( 𝑀  Σg  𝑤 ) ) ) | 
						
							| 18 | 17 | elv | ⊢ ( 𝑥  ∈  ran  ( 𝑤  ∈  Word  𝐺  ↦  ( 𝑀  Σg  𝑤 ) )  ↔  ∃ 𝑤  ∈  Word  𝐺 𝑥  =  ( 𝑀  Σg  𝑤 ) ) | 
						
							| 19 | 15 18 | sylibr | ⊢ ( ( ( 𝑀  ∈  Mnd  ∧  𝐺  ⊆  𝐵 )  ∧  𝑥  ∈  𝐺 )  →  𝑥  ∈  ran  ( 𝑤  ∈  Word  𝐺  ↦  ( 𝑀  Σg  𝑤 ) ) ) | 
						
							| 20 | 19 | ex | ⊢ ( ( 𝑀  ∈  Mnd  ∧  𝐺  ⊆  𝐵 )  →  ( 𝑥  ∈  𝐺  →  𝑥  ∈  ran  ( 𝑤  ∈  Word  𝐺  ↦  ( 𝑀  Σg  𝑤 ) ) ) ) | 
						
							| 21 | 20 | ssrdv | ⊢ ( ( 𝑀  ∈  Mnd  ∧  𝐺  ⊆  𝐵 )  →  𝐺  ⊆  ran  ( 𝑤  ∈  Word  𝐺  ↦  ( 𝑀  Σg  𝑤 ) ) ) | 
						
							| 22 | 2 | mrccl | ⊢ ( ( ( SubMnd ‘ 𝑀 )  ∈  ( Moore ‘ 𝐵 )  ∧  𝐺  ⊆  𝐵 )  →  ( 𝐾 ‘ 𝐺 )  ∈  ( SubMnd ‘ 𝑀 ) ) | 
						
							| 23 | 4 22 | sylan | ⊢ ( ( 𝑀  ∈  Mnd  ∧  𝐺  ⊆  𝐵 )  →  ( 𝐾 ‘ 𝐺 )  ∈  ( SubMnd ‘ 𝑀 ) ) | 
						
							| 24 | 2 | mrcssid | ⊢ ( ( ( SubMnd ‘ 𝑀 )  ∈  ( Moore ‘ 𝐵 )  ∧  𝐺  ⊆  𝐵 )  →  𝐺  ⊆  ( 𝐾 ‘ 𝐺 ) ) | 
						
							| 25 | 4 24 | sylan | ⊢ ( ( 𝑀  ∈  Mnd  ∧  𝐺  ⊆  𝐵 )  →  𝐺  ⊆  ( 𝐾 ‘ 𝐺 ) ) | 
						
							| 26 |  | sswrd | ⊢ ( 𝐺  ⊆  ( 𝐾 ‘ 𝐺 )  →  Word  𝐺  ⊆  Word  ( 𝐾 ‘ 𝐺 ) ) | 
						
							| 27 | 25 26 | syl | ⊢ ( ( 𝑀  ∈  Mnd  ∧  𝐺  ⊆  𝐵 )  →  Word  𝐺  ⊆  Word  ( 𝐾 ‘ 𝐺 ) ) | 
						
							| 28 | 27 | sselda | ⊢ ( ( ( 𝑀  ∈  Mnd  ∧  𝐺  ⊆  𝐵 )  ∧  𝑤  ∈  Word  𝐺 )  →  𝑤  ∈  Word  ( 𝐾 ‘ 𝐺 ) ) | 
						
							| 29 |  | gsumwsubmcl | ⊢ ( ( ( 𝐾 ‘ 𝐺 )  ∈  ( SubMnd ‘ 𝑀 )  ∧  𝑤  ∈  Word  ( 𝐾 ‘ 𝐺 ) )  →  ( 𝑀  Σg  𝑤 )  ∈  ( 𝐾 ‘ 𝐺 ) ) | 
						
							| 30 | 23 28 29 | syl2an2r | ⊢ ( ( ( 𝑀  ∈  Mnd  ∧  𝐺  ⊆  𝐵 )  ∧  𝑤  ∈  Word  𝐺 )  →  ( 𝑀  Σg  𝑤 )  ∈  ( 𝐾 ‘ 𝐺 ) ) | 
						
							| 31 | 30 | fmpttd | ⊢ ( ( 𝑀  ∈  Mnd  ∧  𝐺  ⊆  𝐵 )  →  ( 𝑤  ∈  Word  𝐺  ↦  ( 𝑀  Σg  𝑤 ) ) : Word  𝐺 ⟶ ( 𝐾 ‘ 𝐺 ) ) | 
						
							| 32 | 31 | frnd | ⊢ ( ( 𝑀  ∈  Mnd  ∧  𝐺  ⊆  𝐵 )  →  ran  ( 𝑤  ∈  Word  𝐺  ↦  ( 𝑀  Σg  𝑤 ) )  ⊆  ( 𝐾 ‘ 𝐺 ) ) | 
						
							| 33 | 4 2 | mrcssvd | ⊢ ( 𝑀  ∈  Mnd  →  ( 𝐾 ‘ 𝐺 )  ⊆  𝐵 ) | 
						
							| 34 | 33 | adantr | ⊢ ( ( 𝑀  ∈  Mnd  ∧  𝐺  ⊆  𝐵 )  →  ( 𝐾 ‘ 𝐺 )  ⊆  𝐵 ) | 
						
							| 35 | 32 34 | sstrd | ⊢ ( ( 𝑀  ∈  Mnd  ∧  𝐺  ⊆  𝐵 )  →  ran  ( 𝑤  ∈  Word  𝐺  ↦  ( 𝑀  Σg  𝑤 ) )  ⊆  𝐵 ) | 
						
							| 36 |  | wrd0 | ⊢ ∅  ∈  Word  𝐺 | 
						
							| 37 |  | eqid | ⊢ ( 0g ‘ 𝑀 )  =  ( 0g ‘ 𝑀 ) | 
						
							| 38 | 37 | gsum0 | ⊢ ( 𝑀  Σg  ∅ )  =  ( 0g ‘ 𝑀 ) | 
						
							| 39 | 38 | eqcomi | ⊢ ( 0g ‘ 𝑀 )  =  ( 𝑀  Σg  ∅ ) | 
						
							| 40 | 39 | a1i | ⊢ ( ( 𝑀  ∈  Mnd  ∧  𝐺  ⊆  𝐵 )  →  ( 0g ‘ 𝑀 )  =  ( 𝑀  Σg  ∅ ) ) | 
						
							| 41 |  | oveq2 | ⊢ ( 𝑤  =  ∅  →  ( 𝑀  Σg  𝑤 )  =  ( 𝑀  Σg  ∅ ) ) | 
						
							| 42 | 41 | rspceeqv | ⊢ ( ( ∅  ∈  Word  𝐺  ∧  ( 0g ‘ 𝑀 )  =  ( 𝑀  Σg  ∅ ) )  →  ∃ 𝑤  ∈  Word  𝐺 ( 0g ‘ 𝑀 )  =  ( 𝑀  Σg  𝑤 ) ) | 
						
							| 43 | 36 40 42 | sylancr | ⊢ ( ( 𝑀  ∈  Mnd  ∧  𝐺  ⊆  𝐵 )  →  ∃ 𝑤  ∈  Word  𝐺 ( 0g ‘ 𝑀 )  =  ( 𝑀  Σg  𝑤 ) ) | 
						
							| 44 |  | fvex | ⊢ ( 0g ‘ 𝑀 )  ∈  V | 
						
							| 45 | 16 | elrnmpt | ⊢ ( ( 0g ‘ 𝑀 )  ∈  V  →  ( ( 0g ‘ 𝑀 )  ∈  ran  ( 𝑤  ∈  Word  𝐺  ↦  ( 𝑀  Σg  𝑤 ) )  ↔  ∃ 𝑤  ∈  Word  𝐺 ( 0g ‘ 𝑀 )  =  ( 𝑀  Σg  𝑤 ) ) ) | 
						
							| 46 | 44 45 | ax-mp | ⊢ ( ( 0g ‘ 𝑀 )  ∈  ran  ( 𝑤  ∈  Word  𝐺  ↦  ( 𝑀  Σg  𝑤 ) )  ↔  ∃ 𝑤  ∈  Word  𝐺 ( 0g ‘ 𝑀 )  =  ( 𝑀  Σg  𝑤 ) ) | 
						
							| 47 | 43 46 | sylibr | ⊢ ( ( 𝑀  ∈  Mnd  ∧  𝐺  ⊆  𝐵 )  →  ( 0g ‘ 𝑀 )  ∈  ran  ( 𝑤  ∈  Word  𝐺  ↦  ( 𝑀  Σg  𝑤 ) ) ) | 
						
							| 48 |  | ccatcl | ⊢ ( ( 𝑧  ∈  Word  𝐺  ∧  𝑣  ∈  Word  𝐺 )  →  ( 𝑧  ++  𝑣 )  ∈  Word  𝐺 ) | 
						
							| 49 |  | simpll | ⊢ ( ( ( 𝑀  ∈  Mnd  ∧  𝐺  ⊆  𝐵 )  ∧  ( 𝑧  ∈  Word  𝐺  ∧  𝑣  ∈  Word  𝐺 ) )  →  𝑀  ∈  Mnd ) | 
						
							| 50 |  | sswrd | ⊢ ( 𝐺  ⊆  𝐵  →  Word  𝐺  ⊆  Word  𝐵 ) | 
						
							| 51 | 50 | ad2antlr | ⊢ ( ( ( 𝑀  ∈  Mnd  ∧  𝐺  ⊆  𝐵 )  ∧  ( 𝑧  ∈  Word  𝐺  ∧  𝑣  ∈  Word  𝐺 ) )  →  Word  𝐺  ⊆  Word  𝐵 ) | 
						
							| 52 |  | simprl | ⊢ ( ( ( 𝑀  ∈  Mnd  ∧  𝐺  ⊆  𝐵 )  ∧  ( 𝑧  ∈  Word  𝐺  ∧  𝑣  ∈  Word  𝐺 ) )  →  𝑧  ∈  Word  𝐺 ) | 
						
							| 53 | 51 52 | sseldd | ⊢ ( ( ( 𝑀  ∈  Mnd  ∧  𝐺  ⊆  𝐵 )  ∧  ( 𝑧  ∈  Word  𝐺  ∧  𝑣  ∈  Word  𝐺 ) )  →  𝑧  ∈  Word  𝐵 ) | 
						
							| 54 |  | simprr | ⊢ ( ( ( 𝑀  ∈  Mnd  ∧  𝐺  ⊆  𝐵 )  ∧  ( 𝑧  ∈  Word  𝐺  ∧  𝑣  ∈  Word  𝐺 ) )  →  𝑣  ∈  Word  𝐺 ) | 
						
							| 55 | 51 54 | sseldd | ⊢ ( ( ( 𝑀  ∈  Mnd  ∧  𝐺  ⊆  𝐵 )  ∧  ( 𝑧  ∈  Word  𝐺  ∧  𝑣  ∈  Word  𝐺 ) )  →  𝑣  ∈  Word  𝐵 ) | 
						
							| 56 |  | eqid | ⊢ ( +g ‘ 𝑀 )  =  ( +g ‘ 𝑀 ) | 
						
							| 57 | 1 56 | gsumccat | ⊢ ( ( 𝑀  ∈  Mnd  ∧  𝑧  ∈  Word  𝐵  ∧  𝑣  ∈  Word  𝐵 )  →  ( 𝑀  Σg  ( 𝑧  ++  𝑣 ) )  =  ( ( 𝑀  Σg  𝑧 ) ( +g ‘ 𝑀 ) ( 𝑀  Σg  𝑣 ) ) ) | 
						
							| 58 | 49 53 55 57 | syl3anc | ⊢ ( ( ( 𝑀  ∈  Mnd  ∧  𝐺  ⊆  𝐵 )  ∧  ( 𝑧  ∈  Word  𝐺  ∧  𝑣  ∈  Word  𝐺 ) )  →  ( 𝑀  Σg  ( 𝑧  ++  𝑣 ) )  =  ( ( 𝑀  Σg  𝑧 ) ( +g ‘ 𝑀 ) ( 𝑀  Σg  𝑣 ) ) ) | 
						
							| 59 | 58 | eqcomd | ⊢ ( ( ( 𝑀  ∈  Mnd  ∧  𝐺  ⊆  𝐵 )  ∧  ( 𝑧  ∈  Word  𝐺  ∧  𝑣  ∈  Word  𝐺 ) )  →  ( ( 𝑀  Σg  𝑧 ) ( +g ‘ 𝑀 ) ( 𝑀  Σg  𝑣 ) )  =  ( 𝑀  Σg  ( 𝑧  ++  𝑣 ) ) ) | 
						
							| 60 |  | oveq2 | ⊢ ( 𝑤  =  ( 𝑧  ++  𝑣 )  →  ( 𝑀  Σg  𝑤 )  =  ( 𝑀  Σg  ( 𝑧  ++  𝑣 ) ) ) | 
						
							| 61 | 60 | rspceeqv | ⊢ ( ( ( 𝑧  ++  𝑣 )  ∈  Word  𝐺  ∧  ( ( 𝑀  Σg  𝑧 ) ( +g ‘ 𝑀 ) ( 𝑀  Σg  𝑣 ) )  =  ( 𝑀  Σg  ( 𝑧  ++  𝑣 ) ) )  →  ∃ 𝑤  ∈  Word  𝐺 ( ( 𝑀  Σg  𝑧 ) ( +g ‘ 𝑀 ) ( 𝑀  Σg  𝑣 ) )  =  ( 𝑀  Σg  𝑤 ) ) | 
						
							| 62 | 48 59 61 | syl2an2 | ⊢ ( ( ( 𝑀  ∈  Mnd  ∧  𝐺  ⊆  𝐵 )  ∧  ( 𝑧  ∈  Word  𝐺  ∧  𝑣  ∈  Word  𝐺 ) )  →  ∃ 𝑤  ∈  Word  𝐺 ( ( 𝑀  Σg  𝑧 ) ( +g ‘ 𝑀 ) ( 𝑀  Σg  𝑣 ) )  =  ( 𝑀  Σg  𝑤 ) ) | 
						
							| 63 |  | ovex | ⊢ ( ( 𝑀  Σg  𝑧 ) ( +g ‘ 𝑀 ) ( 𝑀  Σg  𝑣 ) )  ∈  V | 
						
							| 64 | 16 | elrnmpt | ⊢ ( ( ( 𝑀  Σg  𝑧 ) ( +g ‘ 𝑀 ) ( 𝑀  Σg  𝑣 ) )  ∈  V  →  ( ( ( 𝑀  Σg  𝑧 ) ( +g ‘ 𝑀 ) ( 𝑀  Σg  𝑣 ) )  ∈  ran  ( 𝑤  ∈  Word  𝐺  ↦  ( 𝑀  Σg  𝑤 ) )  ↔  ∃ 𝑤  ∈  Word  𝐺 ( ( 𝑀  Σg  𝑧 ) ( +g ‘ 𝑀 ) ( 𝑀  Σg  𝑣 ) )  =  ( 𝑀  Σg  𝑤 ) ) ) | 
						
							| 65 | 63 64 | ax-mp | ⊢ ( ( ( 𝑀  Σg  𝑧 ) ( +g ‘ 𝑀 ) ( 𝑀  Σg  𝑣 ) )  ∈  ran  ( 𝑤  ∈  Word  𝐺  ↦  ( 𝑀  Σg  𝑤 ) )  ↔  ∃ 𝑤  ∈  Word  𝐺 ( ( 𝑀  Σg  𝑧 ) ( +g ‘ 𝑀 ) ( 𝑀  Σg  𝑣 ) )  =  ( 𝑀  Σg  𝑤 ) ) | 
						
							| 66 | 62 65 | sylibr | ⊢ ( ( ( 𝑀  ∈  Mnd  ∧  𝐺  ⊆  𝐵 )  ∧  ( 𝑧  ∈  Word  𝐺  ∧  𝑣  ∈  Word  𝐺 ) )  →  ( ( 𝑀  Σg  𝑧 ) ( +g ‘ 𝑀 ) ( 𝑀  Σg  𝑣 ) )  ∈  ran  ( 𝑤  ∈  Word  𝐺  ↦  ( 𝑀  Σg  𝑤 ) ) ) | 
						
							| 67 | 66 | ralrimivva | ⊢ ( ( 𝑀  ∈  Mnd  ∧  𝐺  ⊆  𝐵 )  →  ∀ 𝑧  ∈  Word  𝐺 ∀ 𝑣  ∈  Word  𝐺 ( ( 𝑀  Σg  𝑧 ) ( +g ‘ 𝑀 ) ( 𝑀  Σg  𝑣 ) )  ∈  ran  ( 𝑤  ∈  Word  𝐺  ↦  ( 𝑀  Σg  𝑤 ) ) ) | 
						
							| 68 |  | oveq2 | ⊢ ( 𝑤  =  𝑧  →  ( 𝑀  Σg  𝑤 )  =  ( 𝑀  Σg  𝑧 ) ) | 
						
							| 69 | 68 | cbvmptv | ⊢ ( 𝑤  ∈  Word  𝐺  ↦  ( 𝑀  Σg  𝑤 ) )  =  ( 𝑧  ∈  Word  𝐺  ↦  ( 𝑀  Σg  𝑧 ) ) | 
						
							| 70 | 69 | rneqi | ⊢ ran  ( 𝑤  ∈  Word  𝐺  ↦  ( 𝑀  Σg  𝑤 ) )  =  ran  ( 𝑧  ∈  Word  𝐺  ↦  ( 𝑀  Σg  𝑧 ) ) | 
						
							| 71 | 70 | raleqi | ⊢ ( ∀ 𝑥  ∈  ran  ( 𝑤  ∈  Word  𝐺  ↦  ( 𝑀  Σg  𝑤 ) ) ∀ 𝑦  ∈  ran  ( 𝑤  ∈  Word  𝐺  ↦  ( 𝑀  Σg  𝑤 ) ) ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 )  ∈  ran  ( 𝑤  ∈  Word  𝐺  ↦  ( 𝑀  Σg  𝑤 ) )  ↔  ∀ 𝑥  ∈  ran  ( 𝑧  ∈  Word  𝐺  ↦  ( 𝑀  Σg  𝑧 ) ) ∀ 𝑦  ∈  ran  ( 𝑤  ∈  Word  𝐺  ↦  ( 𝑀  Σg  𝑤 ) ) ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 )  ∈  ran  ( 𝑤  ∈  Word  𝐺  ↦  ( 𝑀  Σg  𝑤 ) ) ) | 
						
							| 72 |  | oveq2 | ⊢ ( 𝑤  =  𝑣  →  ( 𝑀  Σg  𝑤 )  =  ( 𝑀  Σg  𝑣 ) ) | 
						
							| 73 | 72 | cbvmptv | ⊢ ( 𝑤  ∈  Word  𝐺  ↦  ( 𝑀  Σg  𝑤 ) )  =  ( 𝑣  ∈  Word  𝐺  ↦  ( 𝑀  Σg  𝑣 ) ) | 
						
							| 74 | 73 | rneqi | ⊢ ran  ( 𝑤  ∈  Word  𝐺  ↦  ( 𝑀  Σg  𝑤 ) )  =  ran  ( 𝑣  ∈  Word  𝐺  ↦  ( 𝑀  Σg  𝑣 ) ) | 
						
							| 75 | 74 | raleqi | ⊢ ( ∀ 𝑦  ∈  ran  ( 𝑤  ∈  Word  𝐺  ↦  ( 𝑀  Σg  𝑤 ) ) ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 )  ∈  ran  ( 𝑤  ∈  Word  𝐺  ↦  ( 𝑀  Σg  𝑤 ) )  ↔  ∀ 𝑦  ∈  ran  ( 𝑣  ∈  Word  𝐺  ↦  ( 𝑀  Σg  𝑣 ) ) ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 )  ∈  ran  ( 𝑤  ∈  Word  𝐺  ↦  ( 𝑀  Σg  𝑤 ) ) ) | 
						
							| 76 |  | eqid | ⊢ ( 𝑣  ∈  Word  𝐺  ↦  ( 𝑀  Σg  𝑣 ) )  =  ( 𝑣  ∈  Word  𝐺  ↦  ( 𝑀  Σg  𝑣 ) ) | 
						
							| 77 |  | oveq2 | ⊢ ( 𝑦  =  ( 𝑀  Σg  𝑣 )  →  ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 )  =  ( 𝑥 ( +g ‘ 𝑀 ) ( 𝑀  Σg  𝑣 ) ) ) | 
						
							| 78 | 77 | eleq1d | ⊢ ( 𝑦  =  ( 𝑀  Σg  𝑣 )  →  ( ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 )  ∈  ran  ( 𝑤  ∈  Word  𝐺  ↦  ( 𝑀  Σg  𝑤 ) )  ↔  ( 𝑥 ( +g ‘ 𝑀 ) ( 𝑀  Σg  𝑣 ) )  ∈  ran  ( 𝑤  ∈  Word  𝐺  ↦  ( 𝑀  Σg  𝑤 ) ) ) ) | 
						
							| 79 | 76 78 | ralrnmptw | ⊢ ( ∀ 𝑣  ∈  Word  𝐺 ( 𝑀  Σg  𝑣 )  ∈  V  →  ( ∀ 𝑦  ∈  ran  ( 𝑣  ∈  Word  𝐺  ↦  ( 𝑀  Σg  𝑣 ) ) ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 )  ∈  ran  ( 𝑤  ∈  Word  𝐺  ↦  ( 𝑀  Σg  𝑤 ) )  ↔  ∀ 𝑣  ∈  Word  𝐺 ( 𝑥 ( +g ‘ 𝑀 ) ( 𝑀  Σg  𝑣 ) )  ∈  ran  ( 𝑤  ∈  Word  𝐺  ↦  ( 𝑀  Σg  𝑤 ) ) ) ) | 
						
							| 80 |  | ovexd | ⊢ ( 𝑣  ∈  Word  𝐺  →  ( 𝑀  Σg  𝑣 )  ∈  V ) | 
						
							| 81 | 79 80 | mprg | ⊢ ( ∀ 𝑦  ∈  ran  ( 𝑣  ∈  Word  𝐺  ↦  ( 𝑀  Σg  𝑣 ) ) ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 )  ∈  ran  ( 𝑤  ∈  Word  𝐺  ↦  ( 𝑀  Σg  𝑤 ) )  ↔  ∀ 𝑣  ∈  Word  𝐺 ( 𝑥 ( +g ‘ 𝑀 ) ( 𝑀  Σg  𝑣 ) )  ∈  ran  ( 𝑤  ∈  Word  𝐺  ↦  ( 𝑀  Σg  𝑤 ) ) ) | 
						
							| 82 | 75 81 | bitri | ⊢ ( ∀ 𝑦  ∈  ran  ( 𝑤  ∈  Word  𝐺  ↦  ( 𝑀  Σg  𝑤 ) ) ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 )  ∈  ran  ( 𝑤  ∈  Word  𝐺  ↦  ( 𝑀  Σg  𝑤 ) )  ↔  ∀ 𝑣  ∈  Word  𝐺 ( 𝑥 ( +g ‘ 𝑀 ) ( 𝑀  Σg  𝑣 ) )  ∈  ran  ( 𝑤  ∈  Word  𝐺  ↦  ( 𝑀  Σg  𝑤 ) ) ) | 
						
							| 83 | 82 | ralbii | ⊢ ( ∀ 𝑥  ∈  ran  ( 𝑧  ∈  Word  𝐺  ↦  ( 𝑀  Σg  𝑧 ) ) ∀ 𝑦  ∈  ran  ( 𝑤  ∈  Word  𝐺  ↦  ( 𝑀  Σg  𝑤 ) ) ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 )  ∈  ran  ( 𝑤  ∈  Word  𝐺  ↦  ( 𝑀  Σg  𝑤 ) )  ↔  ∀ 𝑥  ∈  ran  ( 𝑧  ∈  Word  𝐺  ↦  ( 𝑀  Σg  𝑧 ) ) ∀ 𝑣  ∈  Word  𝐺 ( 𝑥 ( +g ‘ 𝑀 ) ( 𝑀  Σg  𝑣 ) )  ∈  ran  ( 𝑤  ∈  Word  𝐺  ↦  ( 𝑀  Σg  𝑤 ) ) ) | 
						
							| 84 |  | eqid | ⊢ ( 𝑧  ∈  Word  𝐺  ↦  ( 𝑀  Σg  𝑧 ) )  =  ( 𝑧  ∈  Word  𝐺  ↦  ( 𝑀  Σg  𝑧 ) ) | 
						
							| 85 |  | oveq1 | ⊢ ( 𝑥  =  ( 𝑀  Σg  𝑧 )  →  ( 𝑥 ( +g ‘ 𝑀 ) ( 𝑀  Σg  𝑣 ) )  =  ( ( 𝑀  Σg  𝑧 ) ( +g ‘ 𝑀 ) ( 𝑀  Σg  𝑣 ) ) ) | 
						
							| 86 | 85 | eleq1d | ⊢ ( 𝑥  =  ( 𝑀  Σg  𝑧 )  →  ( ( 𝑥 ( +g ‘ 𝑀 ) ( 𝑀  Σg  𝑣 ) )  ∈  ran  ( 𝑤  ∈  Word  𝐺  ↦  ( 𝑀  Σg  𝑤 ) )  ↔  ( ( 𝑀  Σg  𝑧 ) ( +g ‘ 𝑀 ) ( 𝑀  Σg  𝑣 ) )  ∈  ran  ( 𝑤  ∈  Word  𝐺  ↦  ( 𝑀  Σg  𝑤 ) ) ) ) | 
						
							| 87 | 86 | ralbidv | ⊢ ( 𝑥  =  ( 𝑀  Σg  𝑧 )  →  ( ∀ 𝑣  ∈  Word  𝐺 ( 𝑥 ( +g ‘ 𝑀 ) ( 𝑀  Σg  𝑣 ) )  ∈  ran  ( 𝑤  ∈  Word  𝐺  ↦  ( 𝑀  Σg  𝑤 ) )  ↔  ∀ 𝑣  ∈  Word  𝐺 ( ( 𝑀  Σg  𝑧 ) ( +g ‘ 𝑀 ) ( 𝑀  Σg  𝑣 ) )  ∈  ran  ( 𝑤  ∈  Word  𝐺  ↦  ( 𝑀  Σg  𝑤 ) ) ) ) | 
						
							| 88 | 84 87 | ralrnmptw | ⊢ ( ∀ 𝑧  ∈  Word  𝐺 ( 𝑀  Σg  𝑧 )  ∈  V  →  ( ∀ 𝑥  ∈  ran  ( 𝑧  ∈  Word  𝐺  ↦  ( 𝑀  Σg  𝑧 ) ) ∀ 𝑣  ∈  Word  𝐺 ( 𝑥 ( +g ‘ 𝑀 ) ( 𝑀  Σg  𝑣 ) )  ∈  ran  ( 𝑤  ∈  Word  𝐺  ↦  ( 𝑀  Σg  𝑤 ) )  ↔  ∀ 𝑧  ∈  Word  𝐺 ∀ 𝑣  ∈  Word  𝐺 ( ( 𝑀  Σg  𝑧 ) ( +g ‘ 𝑀 ) ( 𝑀  Σg  𝑣 ) )  ∈  ran  ( 𝑤  ∈  Word  𝐺  ↦  ( 𝑀  Σg  𝑤 ) ) ) ) | 
						
							| 89 |  | ovexd | ⊢ ( 𝑧  ∈  Word  𝐺  →  ( 𝑀  Σg  𝑧 )  ∈  V ) | 
						
							| 90 | 88 89 | mprg | ⊢ ( ∀ 𝑥  ∈  ran  ( 𝑧  ∈  Word  𝐺  ↦  ( 𝑀  Σg  𝑧 ) ) ∀ 𝑣  ∈  Word  𝐺 ( 𝑥 ( +g ‘ 𝑀 ) ( 𝑀  Σg  𝑣 ) )  ∈  ran  ( 𝑤  ∈  Word  𝐺  ↦  ( 𝑀  Σg  𝑤 ) )  ↔  ∀ 𝑧  ∈  Word  𝐺 ∀ 𝑣  ∈  Word  𝐺 ( ( 𝑀  Σg  𝑧 ) ( +g ‘ 𝑀 ) ( 𝑀  Σg  𝑣 ) )  ∈  ran  ( 𝑤  ∈  Word  𝐺  ↦  ( 𝑀  Σg  𝑤 ) ) ) | 
						
							| 91 | 71 83 90 | 3bitri | ⊢ ( ∀ 𝑥  ∈  ran  ( 𝑤  ∈  Word  𝐺  ↦  ( 𝑀  Σg  𝑤 ) ) ∀ 𝑦  ∈  ran  ( 𝑤  ∈  Word  𝐺  ↦  ( 𝑀  Σg  𝑤 ) ) ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 )  ∈  ran  ( 𝑤  ∈  Word  𝐺  ↦  ( 𝑀  Σg  𝑤 ) )  ↔  ∀ 𝑧  ∈  Word  𝐺 ∀ 𝑣  ∈  Word  𝐺 ( ( 𝑀  Σg  𝑧 ) ( +g ‘ 𝑀 ) ( 𝑀  Σg  𝑣 ) )  ∈  ran  ( 𝑤  ∈  Word  𝐺  ↦  ( 𝑀  Σg  𝑤 ) ) ) | 
						
							| 92 | 67 91 | sylibr | ⊢ ( ( 𝑀  ∈  Mnd  ∧  𝐺  ⊆  𝐵 )  →  ∀ 𝑥  ∈  ran  ( 𝑤  ∈  Word  𝐺  ↦  ( 𝑀  Σg  𝑤 ) ) ∀ 𝑦  ∈  ran  ( 𝑤  ∈  Word  𝐺  ↦  ( 𝑀  Σg  𝑤 ) ) ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 )  ∈  ran  ( 𝑤  ∈  Word  𝐺  ↦  ( 𝑀  Σg  𝑤 ) ) ) | 
						
							| 93 | 1 37 56 | issubm | ⊢ ( 𝑀  ∈  Mnd  →  ( ran  ( 𝑤  ∈  Word  𝐺  ↦  ( 𝑀  Σg  𝑤 ) )  ∈  ( SubMnd ‘ 𝑀 )  ↔  ( ran  ( 𝑤  ∈  Word  𝐺  ↦  ( 𝑀  Σg  𝑤 ) )  ⊆  𝐵  ∧  ( 0g ‘ 𝑀 )  ∈  ran  ( 𝑤  ∈  Word  𝐺  ↦  ( 𝑀  Σg  𝑤 ) )  ∧  ∀ 𝑥  ∈  ran  ( 𝑤  ∈  Word  𝐺  ↦  ( 𝑀  Σg  𝑤 ) ) ∀ 𝑦  ∈  ran  ( 𝑤  ∈  Word  𝐺  ↦  ( 𝑀  Σg  𝑤 ) ) ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 )  ∈  ran  ( 𝑤  ∈  Word  𝐺  ↦  ( 𝑀  Σg  𝑤 ) ) ) ) ) | 
						
							| 94 | 93 | adantr | ⊢ ( ( 𝑀  ∈  Mnd  ∧  𝐺  ⊆  𝐵 )  →  ( ran  ( 𝑤  ∈  Word  𝐺  ↦  ( 𝑀  Σg  𝑤 ) )  ∈  ( SubMnd ‘ 𝑀 )  ↔  ( ran  ( 𝑤  ∈  Word  𝐺  ↦  ( 𝑀  Σg  𝑤 ) )  ⊆  𝐵  ∧  ( 0g ‘ 𝑀 )  ∈  ran  ( 𝑤  ∈  Word  𝐺  ↦  ( 𝑀  Σg  𝑤 ) )  ∧  ∀ 𝑥  ∈  ran  ( 𝑤  ∈  Word  𝐺  ↦  ( 𝑀  Σg  𝑤 ) ) ∀ 𝑦  ∈  ran  ( 𝑤  ∈  Word  𝐺  ↦  ( 𝑀  Σg  𝑤 ) ) ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 )  ∈  ran  ( 𝑤  ∈  Word  𝐺  ↦  ( 𝑀  Σg  𝑤 ) ) ) ) ) | 
						
							| 95 | 35 47 92 94 | mpbir3and | ⊢ ( ( 𝑀  ∈  Mnd  ∧  𝐺  ⊆  𝐵 )  →  ran  ( 𝑤  ∈  Word  𝐺  ↦  ( 𝑀  Σg  𝑤 ) )  ∈  ( SubMnd ‘ 𝑀 ) ) | 
						
							| 96 | 2 | mrcsscl | ⊢ ( ( ( SubMnd ‘ 𝑀 )  ∈  ( Moore ‘ 𝐵 )  ∧  𝐺  ⊆  ran  ( 𝑤  ∈  Word  𝐺  ↦  ( 𝑀  Σg  𝑤 ) )  ∧  ran  ( 𝑤  ∈  Word  𝐺  ↦  ( 𝑀  Σg  𝑤 ) )  ∈  ( SubMnd ‘ 𝑀 ) )  →  ( 𝐾 ‘ 𝐺 )  ⊆  ran  ( 𝑤  ∈  Word  𝐺  ↦  ( 𝑀  Σg  𝑤 ) ) ) | 
						
							| 97 | 5 21 95 96 | syl3anc | ⊢ ( ( 𝑀  ∈  Mnd  ∧  𝐺  ⊆  𝐵 )  →  ( 𝐾 ‘ 𝐺 )  ⊆  ran  ( 𝑤  ∈  Word  𝐺  ↦  ( 𝑀  Σg  𝑤 ) ) ) | 
						
							| 98 | 97 32 | eqssd | ⊢ ( ( 𝑀  ∈  Mnd  ∧  𝐺  ⊆  𝐵 )  →  ( 𝐾 ‘ 𝐺 )  =  ran  ( 𝑤  ∈  Word  𝐺  ↦  ( 𝑀  Σg  𝑤 ) ) ) |