Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
⊢ ( 𝑊 = ∅ → ( 𝐺 Σg 𝑊 ) = ( 𝐺 Σg ∅ ) ) |
2 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
3 |
2
|
gsum0 |
⊢ ( 𝐺 Σg ∅ ) = ( 0g ‘ 𝐺 ) |
4 |
1 3
|
eqtrdi |
⊢ ( 𝑊 = ∅ → ( 𝐺 Σg 𝑊 ) = ( 0g ‘ 𝐺 ) ) |
5 |
4
|
eleq1d |
⊢ ( 𝑊 = ∅ → ( ( 𝐺 Σg 𝑊 ) ∈ 𝑆 ↔ ( 0g ‘ 𝐺 ) ∈ 𝑆 ) ) |
6 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
7 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
8 |
|
submrcl |
⊢ ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) → 𝐺 ∈ Mnd ) |
9 |
8
|
ad2antrr |
⊢ ( ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑊 ∈ Word 𝑆 ) ∧ 𝑊 ≠ ∅ ) → 𝐺 ∈ Mnd ) |
10 |
|
lennncl |
⊢ ( ( 𝑊 ∈ Word 𝑆 ∧ 𝑊 ≠ ∅ ) → ( ♯ ‘ 𝑊 ) ∈ ℕ ) |
11 |
10
|
adantll |
⊢ ( ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑊 ∈ Word 𝑆 ) ∧ 𝑊 ≠ ∅ ) → ( ♯ ‘ 𝑊 ) ∈ ℕ ) |
12 |
|
nnm1nn0 |
⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ → ( ( ♯ ‘ 𝑊 ) − 1 ) ∈ ℕ0 ) |
13 |
11 12
|
syl |
⊢ ( ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑊 ∈ Word 𝑆 ) ∧ 𝑊 ≠ ∅ ) → ( ( ♯ ‘ 𝑊 ) − 1 ) ∈ ℕ0 ) |
14 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
15 |
13 14
|
eleqtrdi |
⊢ ( ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑊 ∈ Word 𝑆 ) ∧ 𝑊 ≠ ∅ ) → ( ( ♯ ‘ 𝑊 ) − 1 ) ∈ ( ℤ≥ ‘ 0 ) ) |
16 |
|
wrdf |
⊢ ( 𝑊 ∈ Word 𝑆 → 𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝑆 ) |
17 |
16
|
ad2antlr |
⊢ ( ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑊 ∈ Word 𝑆 ) ∧ 𝑊 ≠ ∅ ) → 𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝑆 ) |
18 |
11
|
nnzd |
⊢ ( ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑊 ∈ Word 𝑆 ) ∧ 𝑊 ≠ ∅ ) → ( ♯ ‘ 𝑊 ) ∈ ℤ ) |
19 |
|
fzoval |
⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℤ → ( 0 ..^ ( ♯ ‘ 𝑊 ) ) = ( 0 ... ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) |
20 |
18 19
|
syl |
⊢ ( ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑊 ∈ Word 𝑆 ) ∧ 𝑊 ≠ ∅ ) → ( 0 ..^ ( ♯ ‘ 𝑊 ) ) = ( 0 ... ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) |
21 |
20
|
feq2d |
⊢ ( ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑊 ∈ Word 𝑆 ) ∧ 𝑊 ≠ ∅ ) → ( 𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝑆 ↔ 𝑊 : ( 0 ... ( ( ♯ ‘ 𝑊 ) − 1 ) ) ⟶ 𝑆 ) ) |
22 |
17 21
|
mpbid |
⊢ ( ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑊 ∈ Word 𝑆 ) ∧ 𝑊 ≠ ∅ ) → 𝑊 : ( 0 ... ( ( ♯ ‘ 𝑊 ) − 1 ) ) ⟶ 𝑆 ) |
23 |
6
|
submss |
⊢ ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) → 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
24 |
23
|
ad2antrr |
⊢ ( ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑊 ∈ Word 𝑆 ) ∧ 𝑊 ≠ ∅ ) → 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
25 |
22 24
|
fssd |
⊢ ( ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑊 ∈ Word 𝑆 ) ∧ 𝑊 ≠ ∅ ) → 𝑊 : ( 0 ... ( ( ♯ ‘ 𝑊 ) − 1 ) ) ⟶ ( Base ‘ 𝐺 ) ) |
26 |
6 7 9 15 25
|
gsumval2 |
⊢ ( ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑊 ∈ Word 𝑆 ) ∧ 𝑊 ≠ ∅ ) → ( 𝐺 Σg 𝑊 ) = ( seq 0 ( ( +g ‘ 𝐺 ) , 𝑊 ) ‘ ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) |
27 |
22
|
ffvelrnda |
⊢ ( ( ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑊 ∈ Word 𝑆 ) ∧ 𝑊 ≠ ∅ ) ∧ 𝑥 ∈ ( 0 ... ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) → ( 𝑊 ‘ 𝑥 ) ∈ 𝑆 ) |
28 |
7
|
submcl |
⊢ ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑆 ) |
29 |
28
|
3expb |
⊢ ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑆 ) |
30 |
29
|
ad4ant14 |
⊢ ( ( ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑊 ∈ Word 𝑆 ) ∧ 𝑊 ≠ ∅ ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑆 ) |
31 |
15 27 30
|
seqcl |
⊢ ( ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑊 ∈ Word 𝑆 ) ∧ 𝑊 ≠ ∅ ) → ( seq 0 ( ( +g ‘ 𝐺 ) , 𝑊 ) ‘ ( ( ♯ ‘ 𝑊 ) − 1 ) ) ∈ 𝑆 ) |
32 |
26 31
|
eqeltrd |
⊢ ( ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑊 ∈ Word 𝑆 ) ∧ 𝑊 ≠ ∅ ) → ( 𝐺 Σg 𝑊 ) ∈ 𝑆 ) |
33 |
2
|
subm0cl |
⊢ ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) → ( 0g ‘ 𝐺 ) ∈ 𝑆 ) |
34 |
33
|
adantr |
⊢ ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑊 ∈ Word 𝑆 ) → ( 0g ‘ 𝐺 ) ∈ 𝑆 ) |
35 |
5 32 34
|
pm2.61ne |
⊢ ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑊 ∈ Word 𝑆 ) → ( 𝐺 Σg 𝑊 ) ∈ 𝑆 ) |