Step |
Hyp |
Ref |
Expression |
1 |
|
gsumxp.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
gsumxp.z |
⊢ 0 = ( 0g ‘ 𝐺 ) |
3 |
|
gsumxp.g |
⊢ ( 𝜑 → 𝐺 ∈ CMnd ) |
4 |
|
gsumxp.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
5 |
|
gsumxp.r |
⊢ ( 𝜑 → 𝐶 ∈ 𝑊 ) |
6 |
|
gsumxp.f |
⊢ ( 𝜑 → 𝐹 : ( 𝐴 × 𝐶 ) ⟶ 𝐵 ) |
7 |
|
gsumxp.w |
⊢ ( 𝜑 → 𝐹 finSupp 0 ) |
8 |
4 5
|
xpexd |
⊢ ( 𝜑 → ( 𝐴 × 𝐶 ) ∈ V ) |
9 |
|
relxp |
⊢ Rel ( 𝐴 × 𝐶 ) |
10 |
9
|
a1i |
⊢ ( 𝜑 → Rel ( 𝐴 × 𝐶 ) ) |
11 |
|
dmxpss |
⊢ dom ( 𝐴 × 𝐶 ) ⊆ 𝐴 |
12 |
11
|
a1i |
⊢ ( 𝜑 → dom ( 𝐴 × 𝐶 ) ⊆ 𝐴 ) |
13 |
1 2 3 8 10 4 12 6 7
|
gsum2d |
⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg ( 𝑗 ∈ 𝐴 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( ( 𝐴 × 𝐶 ) “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) ) |
14 |
|
df-ima |
⊢ ( ( 𝐴 × 𝐶 ) “ { 𝑗 } ) = ran ( ( 𝐴 × 𝐶 ) ↾ { 𝑗 } ) |
15 |
|
df-res |
⊢ ( ( 𝐴 × 𝐶 ) ↾ { 𝑗 } ) = ( ( 𝐴 × 𝐶 ) ∩ ( { 𝑗 } × V ) ) |
16 |
|
inxp |
⊢ ( ( 𝐴 × 𝐶 ) ∩ ( { 𝑗 } × V ) ) = ( ( 𝐴 ∩ { 𝑗 } ) × ( 𝐶 ∩ V ) ) |
17 |
15 16
|
eqtri |
⊢ ( ( 𝐴 × 𝐶 ) ↾ { 𝑗 } ) = ( ( 𝐴 ∩ { 𝑗 } ) × ( 𝐶 ∩ V ) ) |
18 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → 𝑗 ∈ 𝐴 ) |
19 |
18
|
snssd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → { 𝑗 } ⊆ 𝐴 ) |
20 |
|
sseqin2 |
⊢ ( { 𝑗 } ⊆ 𝐴 ↔ ( 𝐴 ∩ { 𝑗 } ) = { 𝑗 } ) |
21 |
19 20
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ( 𝐴 ∩ { 𝑗 } ) = { 𝑗 } ) |
22 |
|
inv1 |
⊢ ( 𝐶 ∩ V ) = 𝐶 |
23 |
22
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ( 𝐶 ∩ V ) = 𝐶 ) |
24 |
21 23
|
xpeq12d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ( ( 𝐴 ∩ { 𝑗 } ) × ( 𝐶 ∩ V ) ) = ( { 𝑗 } × 𝐶 ) ) |
25 |
17 24
|
eqtrid |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ( ( 𝐴 × 𝐶 ) ↾ { 𝑗 } ) = ( { 𝑗 } × 𝐶 ) ) |
26 |
25
|
rneqd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ran ( ( 𝐴 × 𝐶 ) ↾ { 𝑗 } ) = ran ( { 𝑗 } × 𝐶 ) ) |
27 |
|
vex |
⊢ 𝑗 ∈ V |
28 |
27
|
snnz |
⊢ { 𝑗 } ≠ ∅ |
29 |
|
rnxp |
⊢ ( { 𝑗 } ≠ ∅ → ran ( { 𝑗 } × 𝐶 ) = 𝐶 ) |
30 |
28 29
|
ax-mp |
⊢ ran ( { 𝑗 } × 𝐶 ) = 𝐶 |
31 |
26 30
|
eqtrdi |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ran ( ( 𝐴 × 𝐶 ) ↾ { 𝑗 } ) = 𝐶 ) |
32 |
14 31
|
eqtrid |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ( ( 𝐴 × 𝐶 ) “ { 𝑗 } ) = 𝐶 ) |
33 |
32
|
mpteq1d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ( 𝑘 ∈ ( ( 𝐴 × 𝐶 ) “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) = ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ) |
34 |
33
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ( 𝐺 Σg ( 𝑘 ∈ ( ( 𝐴 × 𝐶 ) “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) = ( 𝐺 Σg ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) |
35 |
34
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑗 ∈ 𝐴 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( ( 𝐴 × 𝐶 ) “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) = ( 𝑗 ∈ 𝐴 ↦ ( 𝐺 Σg ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) |
36 |
35
|
oveq2d |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑗 ∈ 𝐴 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( ( 𝐴 × 𝐶 ) “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) = ( 𝐺 Σg ( 𝑗 ∈ 𝐴 ↦ ( 𝐺 Σg ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) ) |
37 |
13 36
|
eqtrd |
⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg ( 𝑗 ∈ 𝐴 ↦ ( 𝐺 Σg ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) ) |