Step |
Hyp |
Ref |
Expression |
1 |
|
gsumxp2.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
gsumxp2.z |
⊢ 0 = ( 0g ‘ 𝐺 ) |
3 |
|
gsumxp2.g |
⊢ ( 𝜑 → 𝐺 ∈ CMnd ) |
4 |
|
gsumxp2.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
5 |
|
gsumxp2.r |
⊢ ( 𝜑 → 𝐶 ∈ 𝑊 ) |
6 |
|
gsumxp2.f |
⊢ ( 𝜑 → 𝐹 : ( 𝐴 × 𝐶 ) ⟶ 𝐵 ) |
7 |
|
gsumxp2.w |
⊢ ( 𝜑 → 𝐹 finSupp 0 ) |
8 |
6
|
fovrnda |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶 ) ) → ( 𝑗 𝐹 𝑘 ) ∈ 𝐵 ) |
9 |
7
|
fsuppimpd |
⊢ ( 𝜑 → ( 𝐹 supp 0 ) ∈ Fin ) |
10 |
|
simpl |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶 ) ) → 𝜑 ) |
11 |
|
opelxpi |
⊢ ( ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶 ) → 〈 𝑗 , 𝑘 〉 ∈ ( 𝐴 × 𝐶 ) ) |
12 |
11
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶 ) ) ∧ ¬ 〈 𝑗 , 𝑘 〉 ∈ ( 𝐹 supp 0 ) ) → 〈 𝑗 , 𝑘 〉 ∈ ( 𝐴 × 𝐶 ) ) |
13 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶 ) ) ∧ ¬ 〈 𝑗 , 𝑘 〉 ∈ ( 𝐹 supp 0 ) ) → ¬ 〈 𝑗 , 𝑘 〉 ∈ ( 𝐹 supp 0 ) ) |
14 |
12 13
|
eldifd |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶 ) ) ∧ ¬ 〈 𝑗 , 𝑘 〉 ∈ ( 𝐹 supp 0 ) ) → 〈 𝑗 , 𝑘 〉 ∈ ( ( 𝐴 × 𝐶 ) ∖ ( 𝐹 supp 0 ) ) ) |
15 |
|
ssidd |
⊢ ( 𝜑 → ( 𝐹 supp 0 ) ⊆ ( 𝐹 supp 0 ) ) |
16 |
4 5
|
xpexd |
⊢ ( 𝜑 → ( 𝐴 × 𝐶 ) ∈ V ) |
17 |
2
|
fvexi |
⊢ 0 ∈ V |
18 |
17
|
a1i |
⊢ ( 𝜑 → 0 ∈ V ) |
19 |
6 15 16 18
|
suppssr |
⊢ ( ( 𝜑 ∧ 〈 𝑗 , 𝑘 〉 ∈ ( ( 𝐴 × 𝐶 ) ∖ ( 𝐹 supp 0 ) ) ) → ( 𝐹 ‘ 〈 𝑗 , 𝑘 〉 ) = 0 ) |
20 |
10 14 19
|
syl2an2r |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶 ) ) ∧ ¬ 〈 𝑗 , 𝑘 〉 ∈ ( 𝐹 supp 0 ) ) → ( 𝐹 ‘ 〈 𝑗 , 𝑘 〉 ) = 0 ) |
21 |
20
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶 ) ) → ( ¬ 〈 𝑗 , 𝑘 〉 ∈ ( 𝐹 supp 0 ) → ( 𝐹 ‘ 〈 𝑗 , 𝑘 〉 ) = 0 ) ) |
22 |
|
df-br |
⊢ ( 𝑗 ( 𝐹 supp 0 ) 𝑘 ↔ 〈 𝑗 , 𝑘 〉 ∈ ( 𝐹 supp 0 ) ) |
23 |
22
|
notbii |
⊢ ( ¬ 𝑗 ( 𝐹 supp 0 ) 𝑘 ↔ ¬ 〈 𝑗 , 𝑘 〉 ∈ ( 𝐹 supp 0 ) ) |
24 |
|
df-ov |
⊢ ( 𝑗 𝐹 𝑘 ) = ( 𝐹 ‘ 〈 𝑗 , 𝑘 〉 ) |
25 |
24
|
eqeq1i |
⊢ ( ( 𝑗 𝐹 𝑘 ) = 0 ↔ ( 𝐹 ‘ 〈 𝑗 , 𝑘 〉 ) = 0 ) |
26 |
21 23 25
|
3imtr4g |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶 ) ) → ( ¬ 𝑗 ( 𝐹 supp 0 ) 𝑘 → ( 𝑗 𝐹 𝑘 ) = 0 ) ) |
27 |
26
|
impr |
⊢ ( ( 𝜑 ∧ ( ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶 ) ∧ ¬ 𝑗 ( 𝐹 supp 0 ) 𝑘 ) ) → ( 𝑗 𝐹 𝑘 ) = 0 ) |
28 |
1 2 3 4 5 8 9 27
|
gsumcom3 |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑗 ∈ 𝐴 ↦ ( 𝐺 Σg ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) = ( 𝐺 Σg ( 𝑘 ∈ 𝐶 ↦ ( 𝐺 Σg ( 𝑗 ∈ 𝐴 ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) ) |
29 |
28
|
eqcomd |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ 𝐶 ↦ ( 𝐺 Σg ( 𝑗 ∈ 𝐴 ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) = ( 𝐺 Σg ( 𝑗 ∈ 𝐴 ↦ ( 𝐺 Σg ( 𝑘 ∈ 𝐶 ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) ) |