| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gsumxp2.b | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | gsumxp2.z | ⊢  0   =  ( 0g ‘ 𝐺 ) | 
						
							| 3 |  | gsumxp2.g | ⊢ ( 𝜑  →  𝐺  ∈  CMnd ) | 
						
							| 4 |  | gsumxp2.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑉 ) | 
						
							| 5 |  | gsumxp2.r | ⊢ ( 𝜑  →  𝐶  ∈  𝑊 ) | 
						
							| 6 |  | gsumxp2.f | ⊢ ( 𝜑  →  𝐹 : ( 𝐴  ×  𝐶 ) ⟶ 𝐵 ) | 
						
							| 7 |  | gsumxp2.w | ⊢ ( 𝜑  →  𝐹  finSupp   0  ) | 
						
							| 8 | 6 | fovcdmda | ⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  𝐴  ∧  𝑘  ∈  𝐶 ) )  →  ( 𝑗 𝐹 𝑘 )  ∈  𝐵 ) | 
						
							| 9 | 7 | fsuppimpd | ⊢ ( 𝜑  →  ( 𝐹  supp   0  )  ∈  Fin ) | 
						
							| 10 |  | simpl | ⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  𝐴  ∧  𝑘  ∈  𝐶 ) )  →  𝜑 ) | 
						
							| 11 |  | opelxpi | ⊢ ( ( 𝑗  ∈  𝐴  ∧  𝑘  ∈  𝐶 )  →  〈 𝑗 ,  𝑘 〉  ∈  ( 𝐴  ×  𝐶 ) ) | 
						
							| 12 | 11 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  ( 𝑗  ∈  𝐴  ∧  𝑘  ∈  𝐶 ) )  ∧  ¬  〈 𝑗 ,  𝑘 〉  ∈  ( 𝐹  supp   0  ) )  →  〈 𝑗 ,  𝑘 〉  ∈  ( 𝐴  ×  𝐶 ) ) | 
						
							| 13 |  | simpr | ⊢ ( ( ( 𝜑  ∧  ( 𝑗  ∈  𝐴  ∧  𝑘  ∈  𝐶 ) )  ∧  ¬  〈 𝑗 ,  𝑘 〉  ∈  ( 𝐹  supp   0  ) )  →  ¬  〈 𝑗 ,  𝑘 〉  ∈  ( 𝐹  supp   0  ) ) | 
						
							| 14 | 12 13 | eldifd | ⊢ ( ( ( 𝜑  ∧  ( 𝑗  ∈  𝐴  ∧  𝑘  ∈  𝐶 ) )  ∧  ¬  〈 𝑗 ,  𝑘 〉  ∈  ( 𝐹  supp   0  ) )  →  〈 𝑗 ,  𝑘 〉  ∈  ( ( 𝐴  ×  𝐶 )  ∖  ( 𝐹  supp   0  ) ) ) | 
						
							| 15 |  | ssidd | ⊢ ( 𝜑  →  ( 𝐹  supp   0  )  ⊆  ( 𝐹  supp   0  ) ) | 
						
							| 16 | 4 5 | xpexd | ⊢ ( 𝜑  →  ( 𝐴  ×  𝐶 )  ∈  V ) | 
						
							| 17 | 2 | fvexi | ⊢  0   ∈  V | 
						
							| 18 | 17 | a1i | ⊢ ( 𝜑  →   0   ∈  V ) | 
						
							| 19 | 6 15 16 18 | suppssr | ⊢ ( ( 𝜑  ∧  〈 𝑗 ,  𝑘 〉  ∈  ( ( 𝐴  ×  𝐶 )  ∖  ( 𝐹  supp   0  ) ) )  →  ( 𝐹 ‘ 〈 𝑗 ,  𝑘 〉 )  =   0  ) | 
						
							| 20 | 10 14 19 | syl2an2r | ⊢ ( ( ( 𝜑  ∧  ( 𝑗  ∈  𝐴  ∧  𝑘  ∈  𝐶 ) )  ∧  ¬  〈 𝑗 ,  𝑘 〉  ∈  ( 𝐹  supp   0  ) )  →  ( 𝐹 ‘ 〈 𝑗 ,  𝑘 〉 )  =   0  ) | 
						
							| 21 | 20 | ex | ⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  𝐴  ∧  𝑘  ∈  𝐶 ) )  →  ( ¬  〈 𝑗 ,  𝑘 〉  ∈  ( 𝐹  supp   0  )  →  ( 𝐹 ‘ 〈 𝑗 ,  𝑘 〉 )  =   0  ) ) | 
						
							| 22 |  | df-br | ⊢ ( 𝑗 ( 𝐹  supp   0  ) 𝑘  ↔  〈 𝑗 ,  𝑘 〉  ∈  ( 𝐹  supp   0  ) ) | 
						
							| 23 | 22 | notbii | ⊢ ( ¬  𝑗 ( 𝐹  supp   0  ) 𝑘  ↔  ¬  〈 𝑗 ,  𝑘 〉  ∈  ( 𝐹  supp   0  ) ) | 
						
							| 24 |  | df-ov | ⊢ ( 𝑗 𝐹 𝑘 )  =  ( 𝐹 ‘ 〈 𝑗 ,  𝑘 〉 ) | 
						
							| 25 | 24 | eqeq1i | ⊢ ( ( 𝑗 𝐹 𝑘 )  =   0   ↔  ( 𝐹 ‘ 〈 𝑗 ,  𝑘 〉 )  =   0  ) | 
						
							| 26 | 21 23 25 | 3imtr4g | ⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  𝐴  ∧  𝑘  ∈  𝐶 ) )  →  ( ¬  𝑗 ( 𝐹  supp   0  ) 𝑘  →  ( 𝑗 𝐹 𝑘 )  =   0  ) ) | 
						
							| 27 | 26 | impr | ⊢ ( ( 𝜑  ∧  ( ( 𝑗  ∈  𝐴  ∧  𝑘  ∈  𝐶 )  ∧  ¬  𝑗 ( 𝐹  supp   0  ) 𝑘 ) )  →  ( 𝑗 𝐹 𝑘 )  =   0  ) | 
						
							| 28 | 1 2 3 4 5 8 9 27 | gsumcom3 | ⊢ ( 𝜑  →  ( 𝐺  Σg  ( 𝑗  ∈  𝐴  ↦  ( 𝐺  Σg  ( 𝑘  ∈  𝐶  ↦  ( 𝑗 𝐹 𝑘 ) ) ) ) )  =  ( 𝐺  Σg  ( 𝑘  ∈  𝐶  ↦  ( 𝐺  Σg  ( 𝑗  ∈  𝐴  ↦  ( 𝑗 𝐹 𝑘 ) ) ) ) ) ) | 
						
							| 29 | 28 | eqcomd | ⊢ ( 𝜑  →  ( 𝐺  Σg  ( 𝑘  ∈  𝐶  ↦  ( 𝐺  Σg  ( 𝑗  ∈  𝐴  ↦  ( 𝑗 𝐹 𝑘 ) ) ) ) )  =  ( 𝐺  Σg  ( 𝑗  ∈  𝐴  ↦  ( 𝐺  Σg  ( 𝑘  ∈  𝐶  ↦  ( 𝑗 𝐹 𝑘 ) ) ) ) ) ) |