| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsumzinv.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 2 |
|
gsumzinv.0 |
⊢ 0 = ( 0g ‘ 𝐺 ) |
| 3 |
|
gsumzinv.z |
⊢ 𝑍 = ( Cntz ‘ 𝐺 ) |
| 4 |
|
gsumzinv.i |
⊢ 𝐼 = ( invg ‘ 𝐺 ) |
| 5 |
|
gsumzinv.g |
⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
| 6 |
|
gsumzinv.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
| 7 |
|
gsumzinv.f |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 8 |
|
gsumzinv.c |
⊢ ( 𝜑 → ran 𝐹 ⊆ ( 𝑍 ‘ ran 𝐹 ) ) |
| 9 |
|
gsumzinv.n |
⊢ ( 𝜑 → 𝐹 finSupp 0 ) |
| 10 |
|
eqid |
⊢ ( oppg ‘ 𝐺 ) = ( oppg ‘ 𝐺 ) |
| 11 |
5
|
grpmndd |
⊢ ( 𝜑 → 𝐺 ∈ Mnd ) |
| 12 |
1 4
|
grpinvf |
⊢ ( 𝐺 ∈ Grp → 𝐼 : 𝐵 ⟶ 𝐵 ) |
| 13 |
5 12
|
syl |
⊢ ( 𝜑 → 𝐼 : 𝐵 ⟶ 𝐵 ) |
| 14 |
|
fco |
⊢ ( ( 𝐼 : 𝐵 ⟶ 𝐵 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( 𝐼 ∘ 𝐹 ) : 𝐴 ⟶ 𝐵 ) |
| 15 |
13 7 14
|
syl2anc |
⊢ ( 𝜑 → ( 𝐼 ∘ 𝐹 ) : 𝐴 ⟶ 𝐵 ) |
| 16 |
10 4
|
invoppggim |
⊢ ( 𝐺 ∈ Grp → 𝐼 ∈ ( 𝐺 GrpIso ( oppg ‘ 𝐺 ) ) ) |
| 17 |
|
gimghm |
⊢ ( 𝐼 ∈ ( 𝐺 GrpIso ( oppg ‘ 𝐺 ) ) → 𝐼 ∈ ( 𝐺 GrpHom ( oppg ‘ 𝐺 ) ) ) |
| 18 |
|
ghmmhm |
⊢ ( 𝐼 ∈ ( 𝐺 GrpHom ( oppg ‘ 𝐺 ) ) → 𝐼 ∈ ( 𝐺 MndHom ( oppg ‘ 𝐺 ) ) ) |
| 19 |
5 16 17 18
|
4syl |
⊢ ( 𝜑 → 𝐼 ∈ ( 𝐺 MndHom ( oppg ‘ 𝐺 ) ) ) |
| 20 |
|
eqid |
⊢ ( Cntz ‘ ( oppg ‘ 𝐺 ) ) = ( Cntz ‘ ( oppg ‘ 𝐺 ) ) |
| 21 |
3 20
|
cntzmhm2 |
⊢ ( ( 𝐼 ∈ ( 𝐺 MndHom ( oppg ‘ 𝐺 ) ) ∧ ran 𝐹 ⊆ ( 𝑍 ‘ ran 𝐹 ) ) → ( 𝐼 “ ran 𝐹 ) ⊆ ( ( Cntz ‘ ( oppg ‘ 𝐺 ) ) ‘ ( 𝐼 “ ran 𝐹 ) ) ) |
| 22 |
19 8 21
|
syl2anc |
⊢ ( 𝜑 → ( 𝐼 “ ran 𝐹 ) ⊆ ( ( Cntz ‘ ( oppg ‘ 𝐺 ) ) ‘ ( 𝐼 “ ran 𝐹 ) ) ) |
| 23 |
|
rnco2 |
⊢ ran ( 𝐼 ∘ 𝐹 ) = ( 𝐼 “ ran 𝐹 ) |
| 24 |
23
|
fveq2i |
⊢ ( 𝑍 ‘ ran ( 𝐼 ∘ 𝐹 ) ) = ( 𝑍 ‘ ( 𝐼 “ ran 𝐹 ) ) |
| 25 |
10 3
|
oppgcntz |
⊢ ( 𝑍 ‘ ( 𝐼 “ ran 𝐹 ) ) = ( ( Cntz ‘ ( oppg ‘ 𝐺 ) ) ‘ ( 𝐼 “ ran 𝐹 ) ) |
| 26 |
24 25
|
eqtri |
⊢ ( 𝑍 ‘ ran ( 𝐼 ∘ 𝐹 ) ) = ( ( Cntz ‘ ( oppg ‘ 𝐺 ) ) ‘ ( 𝐼 “ ran 𝐹 ) ) |
| 27 |
22 23 26
|
3sstr4g |
⊢ ( 𝜑 → ran ( 𝐼 ∘ 𝐹 ) ⊆ ( 𝑍 ‘ ran ( 𝐼 ∘ 𝐹 ) ) ) |
| 28 |
2
|
fvexi |
⊢ 0 ∈ V |
| 29 |
28
|
a1i |
⊢ ( 𝜑 → 0 ∈ V ) |
| 30 |
1
|
fvexi |
⊢ 𝐵 ∈ V |
| 31 |
30
|
a1i |
⊢ ( 𝜑 → 𝐵 ∈ V ) |
| 32 |
2 4
|
grpinvid |
⊢ ( 𝐺 ∈ Grp → ( 𝐼 ‘ 0 ) = 0 ) |
| 33 |
5 32
|
syl |
⊢ ( 𝜑 → ( 𝐼 ‘ 0 ) = 0 ) |
| 34 |
29 7 13 6 31 9 33
|
fsuppco2 |
⊢ ( 𝜑 → ( 𝐼 ∘ 𝐹 ) finSupp 0 ) |
| 35 |
1 2 3 10 11 6 15 27 34
|
gsumzoppg |
⊢ ( 𝜑 → ( ( oppg ‘ 𝐺 ) Σg ( 𝐼 ∘ 𝐹 ) ) = ( 𝐺 Σg ( 𝐼 ∘ 𝐹 ) ) ) |
| 36 |
10
|
oppgmnd |
⊢ ( 𝐺 ∈ Mnd → ( oppg ‘ 𝐺 ) ∈ Mnd ) |
| 37 |
11 36
|
syl |
⊢ ( 𝜑 → ( oppg ‘ 𝐺 ) ∈ Mnd ) |
| 38 |
1 3 11 37 6 19 7 8 2 9
|
gsumzmhm |
⊢ ( 𝜑 → ( ( oppg ‘ 𝐺 ) Σg ( 𝐼 ∘ 𝐹 ) ) = ( 𝐼 ‘ ( 𝐺 Σg 𝐹 ) ) ) |
| 39 |
35 38
|
eqtr3d |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝐼 ∘ 𝐹 ) ) = ( 𝐼 ‘ ( 𝐺 Σg 𝐹 ) ) ) |