| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gsumzmhm.b | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | gsumzmhm.z | ⊢ 𝑍  =  ( Cntz ‘ 𝐺 ) | 
						
							| 3 |  | gsumzmhm.g | ⊢ ( 𝜑  →  𝐺  ∈  Mnd ) | 
						
							| 4 |  | gsumzmhm.h | ⊢ ( 𝜑  →  𝐻  ∈  Mnd ) | 
						
							| 5 |  | gsumzmhm.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑉 ) | 
						
							| 6 |  | gsumzmhm.k | ⊢ ( 𝜑  →  𝐾  ∈  ( 𝐺  MndHom  𝐻 ) ) | 
						
							| 7 |  | gsumzmhm.f | ⊢ ( 𝜑  →  𝐹 : 𝐴 ⟶ 𝐵 ) | 
						
							| 8 |  | gsumzmhm.c | ⊢ ( 𝜑  →  ran  𝐹  ⊆  ( 𝑍 ‘ ran  𝐹 ) ) | 
						
							| 9 |  | gsumzmhm.0 | ⊢  0   =  ( 0g ‘ 𝐺 ) | 
						
							| 10 |  | gsumzmhm.w | ⊢ ( 𝜑  →  𝐹  finSupp   0  ) | 
						
							| 11 |  | eqid | ⊢ ( 0g ‘ 𝐻 )  =  ( 0g ‘ 𝐻 ) | 
						
							| 12 | 11 | gsumz | ⊢ ( ( 𝐻  ∈  Mnd  ∧  𝐴  ∈  𝑉 )  →  ( 𝐻  Σg  ( 𝑘  ∈  𝐴  ↦  ( 0g ‘ 𝐻 ) ) )  =  ( 0g ‘ 𝐻 ) ) | 
						
							| 13 | 4 5 12 | syl2anc | ⊢ ( 𝜑  →  ( 𝐻  Σg  ( 𝑘  ∈  𝐴  ↦  ( 0g ‘ 𝐻 ) ) )  =  ( 0g ‘ 𝐻 ) ) | 
						
							| 14 | 13 | adantr | ⊢ ( ( 𝜑  ∧  ( ◡ 𝐹  “  ( V  ∖  {  0  } ) )  =  ∅ )  →  ( 𝐻  Σg  ( 𝑘  ∈  𝐴  ↦  ( 0g ‘ 𝐻 ) ) )  =  ( 0g ‘ 𝐻 ) ) | 
						
							| 15 | 9 11 | mhm0 | ⊢ ( 𝐾  ∈  ( 𝐺  MndHom  𝐻 )  →  ( 𝐾 ‘  0  )  =  ( 0g ‘ 𝐻 ) ) | 
						
							| 16 | 6 15 | syl | ⊢ ( 𝜑  →  ( 𝐾 ‘  0  )  =  ( 0g ‘ 𝐻 ) ) | 
						
							| 17 | 16 | adantr | ⊢ ( ( 𝜑  ∧  ( ◡ 𝐹  “  ( V  ∖  {  0  } ) )  =  ∅ )  →  ( 𝐾 ‘  0  )  =  ( 0g ‘ 𝐻 ) ) | 
						
							| 18 | 14 17 | eqtr4d | ⊢ ( ( 𝜑  ∧  ( ◡ 𝐹  “  ( V  ∖  {  0  } ) )  =  ∅ )  →  ( 𝐻  Σg  ( 𝑘  ∈  𝐴  ↦  ( 0g ‘ 𝐻 ) ) )  =  ( 𝐾 ‘  0  ) ) | 
						
							| 19 | 1 9 | mndidcl | ⊢ ( 𝐺  ∈  Mnd  →   0   ∈  𝐵 ) | 
						
							| 20 | 3 19 | syl | ⊢ ( 𝜑  →   0   ∈  𝐵 ) | 
						
							| 21 | 20 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( ◡ 𝐹  “  ( V  ∖  {  0  } ) )  =  ∅ )  ∧  𝑘  ∈  𝐴 )  →   0   ∈  𝐵 ) | 
						
							| 22 | 9 | fvexi | ⊢  0   ∈  V | 
						
							| 23 | 22 | a1i | ⊢ ( 𝜑  →   0   ∈  V ) | 
						
							| 24 | 7 5 | fexd | ⊢ ( 𝜑  →  𝐹  ∈  V ) | 
						
							| 25 |  | suppimacnv | ⊢ ( ( 𝐹  ∈  V  ∧   0   ∈  V )  →  ( 𝐹  supp   0  )  =  ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) | 
						
							| 26 | 24 23 25 | syl2anc | ⊢ ( 𝜑  →  ( 𝐹  supp   0  )  =  ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) | 
						
							| 27 |  | ssid | ⊢ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) )  ⊆  ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) | 
						
							| 28 | 26 27 | eqsstrdi | ⊢ ( 𝜑  →  ( 𝐹  supp   0  )  ⊆  ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) | 
						
							| 29 | 7 5 23 28 | gsumcllem | ⊢ ( ( 𝜑  ∧  ( ◡ 𝐹  “  ( V  ∖  {  0  } ) )  =  ∅ )  →  𝐹  =  ( 𝑘  ∈  𝐴  ↦   0  ) ) | 
						
							| 30 |  | eqid | ⊢ ( Base ‘ 𝐻 )  =  ( Base ‘ 𝐻 ) | 
						
							| 31 | 1 30 | mhmf | ⊢ ( 𝐾  ∈  ( 𝐺  MndHom  𝐻 )  →  𝐾 : 𝐵 ⟶ ( Base ‘ 𝐻 ) ) | 
						
							| 32 | 6 31 | syl | ⊢ ( 𝜑  →  𝐾 : 𝐵 ⟶ ( Base ‘ 𝐻 ) ) | 
						
							| 33 | 32 | feqmptd | ⊢ ( 𝜑  →  𝐾  =  ( 𝑥  ∈  𝐵  ↦  ( 𝐾 ‘ 𝑥 ) ) ) | 
						
							| 34 | 33 | adantr | ⊢ ( ( 𝜑  ∧  ( ◡ 𝐹  “  ( V  ∖  {  0  } ) )  =  ∅ )  →  𝐾  =  ( 𝑥  ∈  𝐵  ↦  ( 𝐾 ‘ 𝑥 ) ) ) | 
						
							| 35 |  | fveq2 | ⊢ ( 𝑥  =   0   →  ( 𝐾 ‘ 𝑥 )  =  ( 𝐾 ‘  0  ) ) | 
						
							| 36 | 21 29 34 35 | fmptco | ⊢ ( ( 𝜑  ∧  ( ◡ 𝐹  “  ( V  ∖  {  0  } ) )  =  ∅ )  →  ( 𝐾  ∘  𝐹 )  =  ( 𝑘  ∈  𝐴  ↦  ( 𝐾 ‘  0  ) ) ) | 
						
							| 37 | 16 | mpteq2dv | ⊢ ( 𝜑  →  ( 𝑘  ∈  𝐴  ↦  ( 𝐾 ‘  0  ) )  =  ( 𝑘  ∈  𝐴  ↦  ( 0g ‘ 𝐻 ) ) ) | 
						
							| 38 | 37 | adantr | ⊢ ( ( 𝜑  ∧  ( ◡ 𝐹  “  ( V  ∖  {  0  } ) )  =  ∅ )  →  ( 𝑘  ∈  𝐴  ↦  ( 𝐾 ‘  0  ) )  =  ( 𝑘  ∈  𝐴  ↦  ( 0g ‘ 𝐻 ) ) ) | 
						
							| 39 | 36 38 | eqtrd | ⊢ ( ( 𝜑  ∧  ( ◡ 𝐹  “  ( V  ∖  {  0  } ) )  =  ∅ )  →  ( 𝐾  ∘  𝐹 )  =  ( 𝑘  ∈  𝐴  ↦  ( 0g ‘ 𝐻 ) ) ) | 
						
							| 40 | 39 | oveq2d | ⊢ ( ( 𝜑  ∧  ( ◡ 𝐹  “  ( V  ∖  {  0  } ) )  =  ∅ )  →  ( 𝐻  Σg  ( 𝐾  ∘  𝐹 ) )  =  ( 𝐻  Σg  ( 𝑘  ∈  𝐴  ↦  ( 0g ‘ 𝐻 ) ) ) ) | 
						
							| 41 | 29 | oveq2d | ⊢ ( ( 𝜑  ∧  ( ◡ 𝐹  “  ( V  ∖  {  0  } ) )  =  ∅ )  →  ( 𝐺  Σg  𝐹 )  =  ( 𝐺  Σg  ( 𝑘  ∈  𝐴  ↦   0  ) ) ) | 
						
							| 42 | 9 | gsumz | ⊢ ( ( 𝐺  ∈  Mnd  ∧  𝐴  ∈  𝑉 )  →  ( 𝐺  Σg  ( 𝑘  ∈  𝐴  ↦   0  ) )  =   0  ) | 
						
							| 43 | 3 5 42 | syl2anc | ⊢ ( 𝜑  →  ( 𝐺  Σg  ( 𝑘  ∈  𝐴  ↦   0  ) )  =   0  ) | 
						
							| 44 | 43 | adantr | ⊢ ( ( 𝜑  ∧  ( ◡ 𝐹  “  ( V  ∖  {  0  } ) )  =  ∅ )  →  ( 𝐺  Σg  ( 𝑘  ∈  𝐴  ↦   0  ) )  =   0  ) | 
						
							| 45 | 41 44 | eqtrd | ⊢ ( ( 𝜑  ∧  ( ◡ 𝐹  “  ( V  ∖  {  0  } ) )  =  ∅ )  →  ( 𝐺  Σg  𝐹 )  =   0  ) | 
						
							| 46 | 45 | fveq2d | ⊢ ( ( 𝜑  ∧  ( ◡ 𝐹  “  ( V  ∖  {  0  } ) )  =  ∅ )  →  ( 𝐾 ‘ ( 𝐺  Σg  𝐹 ) )  =  ( 𝐾 ‘  0  ) ) | 
						
							| 47 | 18 40 46 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  ( ◡ 𝐹  “  ( V  ∖  {  0  } ) )  =  ∅ )  →  ( 𝐻  Σg  ( 𝐾  ∘  𝐹 ) )  =  ( 𝐾 ‘ ( 𝐺  Σg  𝐹 ) ) ) | 
						
							| 48 | 47 | ex | ⊢ ( 𝜑  →  ( ( ◡ 𝐹  “  ( V  ∖  {  0  } ) )  =  ∅  →  ( 𝐻  Σg  ( 𝐾  ∘  𝐹 ) )  =  ( 𝐾 ‘ ( 𝐺  Σg  𝐹 ) ) ) ) | 
						
							| 49 | 3 | adantr | ⊢ ( ( 𝜑  ∧  ( ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) )  ∈  ℕ  ∧  𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) –1-1-onto→ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) )  →  𝐺  ∈  Mnd ) | 
						
							| 50 |  | eqid | ⊢ ( +g ‘ 𝐺 )  =  ( +g ‘ 𝐺 ) | 
						
							| 51 | 1 50 | mndcl | ⊢ ( ( 𝐺  ∈  Mnd  ∧  𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  →  ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 )  ∈  𝐵 ) | 
						
							| 52 | 51 | 3expb | ⊢ ( ( 𝐺  ∈  Mnd  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 )  ∈  𝐵 ) | 
						
							| 53 | 49 52 | sylan | ⊢ ( ( ( 𝜑  ∧  ( ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) )  ∈  ℕ  ∧  𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) –1-1-onto→ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 )  ∈  𝐵 ) | 
						
							| 54 |  | f1of1 | ⊢ ( 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) –1-1-onto→ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) )  →  𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) –1-1→ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) | 
						
							| 55 | 54 | ad2antll | ⊢ ( ( 𝜑  ∧  ( ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) )  ∈  ℕ  ∧  𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) –1-1-onto→ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) )  →  𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) –1-1→ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) | 
						
							| 56 |  | cnvimass | ⊢ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) )  ⊆  dom  𝐹 | 
						
							| 57 | 7 | adantr | ⊢ ( ( 𝜑  ∧  ( ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) )  ∈  ℕ  ∧  𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) –1-1-onto→ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) )  →  𝐹 : 𝐴 ⟶ 𝐵 ) | 
						
							| 58 | 56 57 | fssdm | ⊢ ( ( 𝜑  ∧  ( ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) )  ∈  ℕ  ∧  𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) –1-1-onto→ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) )  →  ( ◡ 𝐹  “  ( V  ∖  {  0  } ) )  ⊆  𝐴 ) | 
						
							| 59 |  | f1ss | ⊢ ( ( 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) –1-1→ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) )  ∧  ( ◡ 𝐹  “  ( V  ∖  {  0  } ) )  ⊆  𝐴 )  →  𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) –1-1→ 𝐴 ) | 
						
							| 60 | 55 58 59 | syl2anc | ⊢ ( ( 𝜑  ∧  ( ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) )  ∈  ℕ  ∧  𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) –1-1-onto→ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) )  →  𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) –1-1→ 𝐴 ) | 
						
							| 61 |  | f1f | ⊢ ( 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) –1-1→ 𝐴  →  𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) ⟶ 𝐴 ) | 
						
							| 62 | 60 61 | syl | ⊢ ( ( 𝜑  ∧  ( ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) )  ∈  ℕ  ∧  𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) –1-1-onto→ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) )  →  𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) ⟶ 𝐴 ) | 
						
							| 63 |  | fco | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) ⟶ 𝐴 )  →  ( 𝐹  ∘  𝑓 ) : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) ⟶ 𝐵 ) | 
						
							| 64 | 7 62 63 | syl2an2r | ⊢ ( ( 𝜑  ∧  ( ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) )  ∈  ℕ  ∧  𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) –1-1-onto→ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) )  →  ( 𝐹  ∘  𝑓 ) : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) ⟶ 𝐵 ) | 
						
							| 65 | 64 | ffvelcdmda | ⊢ ( ( ( 𝜑  ∧  ( ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) )  ∈  ℕ  ∧  𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) –1-1-onto→ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) )  ∧  𝑥  ∈  ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) )  →  ( ( 𝐹  ∘  𝑓 ) ‘ 𝑥 )  ∈  𝐵 ) | 
						
							| 66 |  | simprl | ⊢ ( ( 𝜑  ∧  ( ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) )  ∈  ℕ  ∧  𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) –1-1-onto→ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) )  →  ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) )  ∈  ℕ ) | 
						
							| 67 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 68 | 66 67 | eleqtrdi | ⊢ ( ( 𝜑  ∧  ( ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) )  ∈  ℕ  ∧  𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) –1-1-onto→ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) )  →  ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) )  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 69 | 6 | adantr | ⊢ ( ( 𝜑  ∧  ( ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) )  ∈  ℕ  ∧  𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) –1-1-onto→ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) )  →  𝐾  ∈  ( 𝐺  MndHom  𝐻 ) ) | 
						
							| 70 |  | eqid | ⊢ ( +g ‘ 𝐻 )  =  ( +g ‘ 𝐻 ) | 
						
							| 71 | 1 50 70 | mhmlin | ⊢ ( ( 𝐾  ∈  ( 𝐺  MndHom  𝐻 )  ∧  𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  →  ( 𝐾 ‘ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) )  =  ( ( 𝐾 ‘ 𝑥 ) ( +g ‘ 𝐻 ) ( 𝐾 ‘ 𝑦 ) ) ) | 
						
							| 72 | 71 | 3expb | ⊢ ( ( 𝐾  ∈  ( 𝐺  MndHom  𝐻 )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝐾 ‘ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) )  =  ( ( 𝐾 ‘ 𝑥 ) ( +g ‘ 𝐻 ) ( 𝐾 ‘ 𝑦 ) ) ) | 
						
							| 73 | 69 72 | sylan | ⊢ ( ( ( 𝜑  ∧  ( ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) )  ∈  ℕ  ∧  𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) –1-1-onto→ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝐾 ‘ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) )  =  ( ( 𝐾 ‘ 𝑥 ) ( +g ‘ 𝐻 ) ( 𝐾 ‘ 𝑦 ) ) ) | 
						
							| 74 |  | coass | ⊢ ( ( 𝐾  ∘  𝐹 )  ∘  𝑓 )  =  ( 𝐾  ∘  ( 𝐹  ∘  𝑓 ) ) | 
						
							| 75 | 74 | fveq1i | ⊢ ( ( ( 𝐾  ∘  𝐹 )  ∘  𝑓 ) ‘ 𝑥 )  =  ( ( 𝐾  ∘  ( 𝐹  ∘  𝑓 ) ) ‘ 𝑥 ) | 
						
							| 76 |  | fvco3 | ⊢ ( ( ( 𝐹  ∘  𝑓 ) : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) ⟶ 𝐵  ∧  𝑥  ∈  ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) )  →  ( ( 𝐾  ∘  ( 𝐹  ∘  𝑓 ) ) ‘ 𝑥 )  =  ( 𝐾 ‘ ( ( 𝐹  ∘  𝑓 ) ‘ 𝑥 ) ) ) | 
						
							| 77 | 64 76 | sylan | ⊢ ( ( ( 𝜑  ∧  ( ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) )  ∈  ℕ  ∧  𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) –1-1-onto→ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) )  ∧  𝑥  ∈  ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) )  →  ( ( 𝐾  ∘  ( 𝐹  ∘  𝑓 ) ) ‘ 𝑥 )  =  ( 𝐾 ‘ ( ( 𝐹  ∘  𝑓 ) ‘ 𝑥 ) ) ) | 
						
							| 78 | 75 77 | eqtr2id | ⊢ ( ( ( 𝜑  ∧  ( ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) )  ∈  ℕ  ∧  𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) –1-1-onto→ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) )  ∧  𝑥  ∈  ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) )  →  ( 𝐾 ‘ ( ( 𝐹  ∘  𝑓 ) ‘ 𝑥 ) )  =  ( ( ( 𝐾  ∘  𝐹 )  ∘  𝑓 ) ‘ 𝑥 ) ) | 
						
							| 79 | 53 65 68 73 78 | seqhomo | ⊢ ( ( 𝜑  ∧  ( ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) )  ∈  ℕ  ∧  𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) –1-1-onto→ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) )  →  ( 𝐾 ‘ ( seq 1 ( ( +g ‘ 𝐺 ) ,  ( 𝐹  ∘  𝑓 ) ) ‘ ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) )  =  ( seq 1 ( ( +g ‘ 𝐻 ) ,  ( ( 𝐾  ∘  𝐹 )  ∘  𝑓 ) ) ‘ ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) ) | 
						
							| 80 | 5 | adantr | ⊢ ( ( 𝜑  ∧  ( ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) )  ∈  ℕ  ∧  𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) –1-1-onto→ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) )  →  𝐴  ∈  𝑉 ) | 
						
							| 81 | 8 | adantr | ⊢ ( ( 𝜑  ∧  ( ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) )  ∈  ℕ  ∧  𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) –1-1-onto→ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) )  →  ran  𝐹  ⊆  ( 𝑍 ‘ ran  𝐹 ) ) | 
						
							| 82 | 28 | adantr | ⊢ ( ( 𝜑  ∧  ( ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) )  ∈  ℕ  ∧  𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) –1-1-onto→ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) )  →  ( 𝐹  supp   0  )  ⊆  ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) | 
						
							| 83 |  | f1ofo | ⊢ ( 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) –1-1-onto→ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) )  →  𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) –onto→ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) | 
						
							| 84 |  | forn | ⊢ ( 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) –onto→ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) )  →  ran  𝑓  =  ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) | 
						
							| 85 | 83 84 | syl | ⊢ ( 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) –1-1-onto→ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) )  →  ran  𝑓  =  ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) | 
						
							| 86 | 85 | ad2antll | ⊢ ( ( 𝜑  ∧  ( ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) )  ∈  ℕ  ∧  𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) –1-1-onto→ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) )  →  ran  𝑓  =  ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) | 
						
							| 87 | 82 86 | sseqtrrd | ⊢ ( ( 𝜑  ∧  ( ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) )  ∈  ℕ  ∧  𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) –1-1-onto→ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) )  →  ( 𝐹  supp   0  )  ⊆  ran  𝑓 ) | 
						
							| 88 |  | eqid | ⊢ ( ( 𝐹  ∘  𝑓 )  supp   0  )  =  ( ( 𝐹  ∘  𝑓 )  supp   0  ) | 
						
							| 89 | 1 9 50 2 49 80 57 81 66 60 87 88 | gsumval3 | ⊢ ( ( 𝜑  ∧  ( ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) )  ∈  ℕ  ∧  𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) –1-1-onto→ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) )  →  ( 𝐺  Σg  𝐹 )  =  ( seq 1 ( ( +g ‘ 𝐺 ) ,  ( 𝐹  ∘  𝑓 ) ) ‘ ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) ) | 
						
							| 90 | 89 | fveq2d | ⊢ ( ( 𝜑  ∧  ( ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) )  ∈  ℕ  ∧  𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) –1-1-onto→ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) )  →  ( 𝐾 ‘ ( 𝐺  Σg  𝐹 ) )  =  ( 𝐾 ‘ ( seq 1 ( ( +g ‘ 𝐺 ) ,  ( 𝐹  ∘  𝑓 ) ) ‘ ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) ) ) | 
						
							| 91 |  | eqid | ⊢ ( Cntz ‘ 𝐻 )  =  ( Cntz ‘ 𝐻 ) | 
						
							| 92 | 4 | adantr | ⊢ ( ( 𝜑  ∧  ( ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) )  ∈  ℕ  ∧  𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) –1-1-onto→ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) )  →  𝐻  ∈  Mnd ) | 
						
							| 93 |  | fco | ⊢ ( ( 𝐾 : 𝐵 ⟶ ( Base ‘ 𝐻 )  ∧  𝐹 : 𝐴 ⟶ 𝐵 )  →  ( 𝐾  ∘  𝐹 ) : 𝐴 ⟶ ( Base ‘ 𝐻 ) ) | 
						
							| 94 | 32 57 93 | syl2an2r | ⊢ ( ( 𝜑  ∧  ( ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) )  ∈  ℕ  ∧  𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) –1-1-onto→ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) )  →  ( 𝐾  ∘  𝐹 ) : 𝐴 ⟶ ( Base ‘ 𝐻 ) ) | 
						
							| 95 | 2 91 | cntzmhm2 | ⊢ ( ( 𝐾  ∈  ( 𝐺  MndHom  𝐻 )  ∧  ran  𝐹  ⊆  ( 𝑍 ‘ ran  𝐹 ) )  →  ( 𝐾  “  ran  𝐹 )  ⊆  ( ( Cntz ‘ 𝐻 ) ‘ ( 𝐾  “  ran  𝐹 ) ) ) | 
						
							| 96 | 6 81 95 | syl2an2r | ⊢ ( ( 𝜑  ∧  ( ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) )  ∈  ℕ  ∧  𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) –1-1-onto→ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) )  →  ( 𝐾  “  ran  𝐹 )  ⊆  ( ( Cntz ‘ 𝐻 ) ‘ ( 𝐾  “  ran  𝐹 ) ) ) | 
						
							| 97 |  | rnco2 | ⊢ ran  ( 𝐾  ∘  𝐹 )  =  ( 𝐾  “  ran  𝐹 ) | 
						
							| 98 | 97 | fveq2i | ⊢ ( ( Cntz ‘ 𝐻 ) ‘ ran  ( 𝐾  ∘  𝐹 ) )  =  ( ( Cntz ‘ 𝐻 ) ‘ ( 𝐾  “  ran  𝐹 ) ) | 
						
							| 99 | 96 97 98 | 3sstr4g | ⊢ ( ( 𝜑  ∧  ( ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) )  ∈  ℕ  ∧  𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) –1-1-onto→ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) )  →  ran  ( 𝐾  ∘  𝐹 )  ⊆  ( ( Cntz ‘ 𝐻 ) ‘ ran  ( 𝐾  ∘  𝐹 ) ) ) | 
						
							| 100 |  | eldifi | ⊢ ( 𝑥  ∈  ( 𝐴  ∖  ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) )  →  𝑥  ∈  𝐴 ) | 
						
							| 101 |  | fvco3 | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑥  ∈  𝐴 )  →  ( ( 𝐾  ∘  𝐹 ) ‘ 𝑥 )  =  ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 102 | 57 100 101 | syl2an | ⊢ ( ( ( 𝜑  ∧  ( ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) )  ∈  ℕ  ∧  𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) –1-1-onto→ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) )  ∧  𝑥  ∈  ( 𝐴  ∖  ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) )  →  ( ( 𝐾  ∘  𝐹 ) ‘ 𝑥 )  =  ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 103 | 22 | a1i | ⊢ ( ( 𝜑  ∧  ( ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) )  ∈  ℕ  ∧  𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) –1-1-onto→ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) )  →   0   ∈  V ) | 
						
							| 104 | 57 82 80 103 | suppssr | ⊢ ( ( ( 𝜑  ∧  ( ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) )  ∈  ℕ  ∧  𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) –1-1-onto→ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) )  ∧  𝑥  ∈  ( 𝐴  ∖  ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) )  →  ( 𝐹 ‘ 𝑥 )  =   0  ) | 
						
							| 105 | 104 | fveq2d | ⊢ ( ( ( 𝜑  ∧  ( ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) )  ∈  ℕ  ∧  𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) –1-1-onto→ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) )  ∧  𝑥  ∈  ( 𝐴  ∖  ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) )  →  ( 𝐾 ‘ ( 𝐹 ‘ 𝑥 ) )  =  ( 𝐾 ‘  0  ) ) | 
						
							| 106 | 16 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) )  ∈  ℕ  ∧  𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) –1-1-onto→ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) )  ∧  𝑥  ∈  ( 𝐴  ∖  ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) )  →  ( 𝐾 ‘  0  )  =  ( 0g ‘ 𝐻 ) ) | 
						
							| 107 | 102 105 106 | 3eqtrd | ⊢ ( ( ( 𝜑  ∧  ( ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) )  ∈  ℕ  ∧  𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) –1-1-onto→ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) )  ∧  𝑥  ∈  ( 𝐴  ∖  ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) )  →  ( ( 𝐾  ∘  𝐹 ) ‘ 𝑥 )  =  ( 0g ‘ 𝐻 ) ) | 
						
							| 108 | 94 107 | suppss | ⊢ ( ( 𝜑  ∧  ( ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) )  ∈  ℕ  ∧  𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) –1-1-onto→ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) )  →  ( ( 𝐾  ∘  𝐹 )  supp  ( 0g ‘ 𝐻 ) )  ⊆  ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) | 
						
							| 109 | 108 86 | sseqtrrd | ⊢ ( ( 𝜑  ∧  ( ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) )  ∈  ℕ  ∧  𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) –1-1-onto→ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) )  →  ( ( 𝐾  ∘  𝐹 )  supp  ( 0g ‘ 𝐻 ) )  ⊆  ran  𝑓 ) | 
						
							| 110 |  | eqid | ⊢ ( ( ( 𝐾  ∘  𝐹 )  ∘  𝑓 )  supp  ( 0g ‘ 𝐻 ) )  =  ( ( ( 𝐾  ∘  𝐹 )  ∘  𝑓 )  supp  ( 0g ‘ 𝐻 ) ) | 
						
							| 111 | 30 11 70 91 92 80 94 99 66 60 109 110 | gsumval3 | ⊢ ( ( 𝜑  ∧  ( ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) )  ∈  ℕ  ∧  𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) –1-1-onto→ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) )  →  ( 𝐻  Σg  ( 𝐾  ∘  𝐹 ) )  =  ( seq 1 ( ( +g ‘ 𝐻 ) ,  ( ( 𝐾  ∘  𝐹 )  ∘  𝑓 ) ) ‘ ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) ) | 
						
							| 112 | 79 90 111 | 3eqtr4rd | ⊢ ( ( 𝜑  ∧  ( ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) )  ∈  ℕ  ∧  𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) –1-1-onto→ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) )  →  ( 𝐻  Σg  ( 𝐾  ∘  𝐹 ) )  =  ( 𝐾 ‘ ( 𝐺  Σg  𝐹 ) ) ) | 
						
							| 113 | 112 | expr | ⊢ ( ( 𝜑  ∧  ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) )  ∈  ℕ )  →  ( 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) –1-1-onto→ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) )  →  ( 𝐻  Σg  ( 𝐾  ∘  𝐹 ) )  =  ( 𝐾 ‘ ( 𝐺  Σg  𝐹 ) ) ) ) | 
						
							| 114 | 113 | exlimdv | ⊢ ( ( 𝜑  ∧  ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) )  ∈  ℕ )  →  ( ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) –1-1-onto→ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) )  →  ( 𝐻  Σg  ( 𝐾  ∘  𝐹 ) )  =  ( 𝐾 ‘ ( 𝐺  Σg  𝐹 ) ) ) ) | 
						
							| 115 | 114 | expimpd | ⊢ ( 𝜑  →  ( ( ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) )  ∈  ℕ  ∧  ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) –1-1-onto→ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) )  →  ( 𝐻  Σg  ( 𝐾  ∘  𝐹 ) )  =  ( 𝐾 ‘ ( 𝐺  Σg  𝐹 ) ) ) ) | 
						
							| 116 | 10 | fsuppimpd | ⊢ ( 𝜑  →  ( 𝐹  supp   0  )  ∈  Fin ) | 
						
							| 117 | 26 116 | eqeltrrd | ⊢ ( 𝜑  →  ( ◡ 𝐹  “  ( V  ∖  {  0  } ) )  ∈  Fin ) | 
						
							| 118 |  | fz1f1o | ⊢ ( ( ◡ 𝐹  “  ( V  ∖  {  0  } ) )  ∈  Fin  →  ( ( ◡ 𝐹  “  ( V  ∖  {  0  } ) )  =  ∅  ∨  ( ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) )  ∈  ℕ  ∧  ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) –1-1-onto→ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) ) | 
						
							| 119 | 117 118 | syl | ⊢ ( 𝜑  →  ( ( ◡ 𝐹  “  ( V  ∖  {  0  } ) )  =  ∅  ∨  ( ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) )  ∈  ℕ  ∧  ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) –1-1-onto→ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) ) | 
						
							| 120 | 48 115 119 | mpjaod | ⊢ ( 𝜑  →  ( 𝐻  Σg  ( 𝐾  ∘  𝐹 ) )  =  ( 𝐾 ‘ ( 𝐺  Σg  𝐹 ) ) ) |