| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gsumzoppg.b | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | gsumzoppg.0 | ⊢  0   =  ( 0g ‘ 𝐺 ) | 
						
							| 3 |  | gsumzoppg.z | ⊢ 𝑍  =  ( Cntz ‘ 𝐺 ) | 
						
							| 4 |  | gsumzoppg.o | ⊢ 𝑂  =  ( oppg ‘ 𝐺 ) | 
						
							| 5 |  | gsumzoppg.g | ⊢ ( 𝜑  →  𝐺  ∈  Mnd ) | 
						
							| 6 |  | gsumzoppg.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑉 ) | 
						
							| 7 |  | gsumzoppg.f | ⊢ ( 𝜑  →  𝐹 : 𝐴 ⟶ 𝐵 ) | 
						
							| 8 |  | gsumzoppg.c | ⊢ ( 𝜑  →  ran  𝐹  ⊆  ( 𝑍 ‘ ran  𝐹 ) ) | 
						
							| 9 |  | gsumzoppg.n | ⊢ ( 𝜑  →  𝐹  finSupp   0  ) | 
						
							| 10 | 4 | oppgmnd | ⊢ ( 𝐺  ∈  Mnd  →  𝑂  ∈  Mnd ) | 
						
							| 11 | 5 10 | syl | ⊢ ( 𝜑  →  𝑂  ∈  Mnd ) | 
						
							| 12 | 4 2 | oppgid | ⊢  0   =  ( 0g ‘ 𝑂 ) | 
						
							| 13 | 12 | gsumz | ⊢ ( ( 𝑂  ∈  Mnd  ∧  𝐴  ∈  𝑉 )  →  ( 𝑂  Σg  ( 𝑘  ∈  𝐴  ↦   0  ) )  =   0  ) | 
						
							| 14 | 11 6 13 | syl2anc | ⊢ ( 𝜑  →  ( 𝑂  Σg  ( 𝑘  ∈  𝐴  ↦   0  ) )  =   0  ) | 
						
							| 15 | 2 | gsumz | ⊢ ( ( 𝐺  ∈  Mnd  ∧  𝐴  ∈  𝑉 )  →  ( 𝐺  Σg  ( 𝑘  ∈  𝐴  ↦   0  ) )  =   0  ) | 
						
							| 16 | 5 6 15 | syl2anc | ⊢ ( 𝜑  →  ( 𝐺  Σg  ( 𝑘  ∈  𝐴  ↦   0  ) )  =   0  ) | 
						
							| 17 | 14 16 | eqtr4d | ⊢ ( 𝜑  →  ( 𝑂  Σg  ( 𝑘  ∈  𝐴  ↦   0  ) )  =  ( 𝐺  Σg  ( 𝑘  ∈  𝐴  ↦   0  ) ) ) | 
						
							| 18 | 17 | adantr | ⊢ ( ( 𝜑  ∧  ( ◡ 𝐹  “  ( V  ∖  {  0  } ) )  =  ∅ )  →  ( 𝑂  Σg  ( 𝑘  ∈  𝐴  ↦   0  ) )  =  ( 𝐺  Σg  ( 𝑘  ∈  𝐴  ↦   0  ) ) ) | 
						
							| 19 | 2 | fvexi | ⊢  0   ∈  V | 
						
							| 20 | 19 | a1i | ⊢ ( 𝜑  →   0   ∈  V ) | 
						
							| 21 |  | ssid | ⊢ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) )  ⊆  ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) | 
						
							| 22 | 7 6 | fexd | ⊢ ( 𝜑  →  𝐹  ∈  V ) | 
						
							| 23 |  | suppimacnv | ⊢ ( ( 𝐹  ∈  V  ∧   0   ∈  V )  →  ( 𝐹  supp   0  )  =  ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) | 
						
							| 24 | 22 19 23 | sylancl | ⊢ ( 𝜑  →  ( 𝐹  supp   0  )  =  ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) | 
						
							| 25 | 24 | sseq1d | ⊢ ( 𝜑  →  ( ( 𝐹  supp   0  )  ⊆  ( ◡ 𝐹  “  ( V  ∖  {  0  } ) )  ↔  ( ◡ 𝐹  “  ( V  ∖  {  0  } ) )  ⊆  ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) | 
						
							| 26 | 21 25 | mpbiri | ⊢ ( 𝜑  →  ( 𝐹  supp   0  )  ⊆  ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) | 
						
							| 27 | 7 6 20 26 | gsumcllem | ⊢ ( ( 𝜑  ∧  ( ◡ 𝐹  “  ( V  ∖  {  0  } ) )  =  ∅ )  →  𝐹  =  ( 𝑘  ∈  𝐴  ↦   0  ) ) | 
						
							| 28 | 27 | oveq2d | ⊢ ( ( 𝜑  ∧  ( ◡ 𝐹  “  ( V  ∖  {  0  } ) )  =  ∅ )  →  ( 𝑂  Σg  𝐹 )  =  ( 𝑂  Σg  ( 𝑘  ∈  𝐴  ↦   0  ) ) ) | 
						
							| 29 | 27 | oveq2d | ⊢ ( ( 𝜑  ∧  ( ◡ 𝐹  “  ( V  ∖  {  0  } ) )  =  ∅ )  →  ( 𝐺  Σg  𝐹 )  =  ( 𝐺  Σg  ( 𝑘  ∈  𝐴  ↦   0  ) ) ) | 
						
							| 30 | 18 28 29 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  ( ◡ 𝐹  “  ( V  ∖  {  0  } ) )  =  ∅ )  →  ( 𝑂  Σg  𝐹 )  =  ( 𝐺  Σg  𝐹 ) ) | 
						
							| 31 | 30 | ex | ⊢ ( 𝜑  →  ( ( ◡ 𝐹  “  ( V  ∖  {  0  } ) )  =  ∅  →  ( 𝑂  Σg  𝐹 )  =  ( 𝐺  Σg  𝐹 ) ) ) | 
						
							| 32 |  | simprl | ⊢ ( ( 𝜑  ∧  ( ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) )  ∈  ℕ  ∧  𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) –1-1-onto→ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) )  →  ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) )  ∈  ℕ ) | 
						
							| 33 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 34 | 32 33 | eleqtrdi | ⊢ ( ( 𝜑  ∧  ( ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) )  ∈  ℕ  ∧  𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) –1-1-onto→ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) )  →  ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) )  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 35 | 7 | adantr | ⊢ ( ( 𝜑  ∧  ( ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) )  ∈  ℕ  ∧  𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) –1-1-onto→ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) )  →  𝐹 : 𝐴 ⟶ 𝐵 ) | 
						
							| 36 |  | ffn | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵  →  𝐹  Fn  𝐴 ) | 
						
							| 37 |  | dffn4 | ⊢ ( 𝐹  Fn  𝐴  ↔  𝐹 : 𝐴 –onto→ ran  𝐹 ) | 
						
							| 38 | 36 37 | sylib | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵  →  𝐹 : 𝐴 –onto→ ran  𝐹 ) | 
						
							| 39 |  | fof | ⊢ ( 𝐹 : 𝐴 –onto→ ran  𝐹  →  𝐹 : 𝐴 ⟶ ran  𝐹 ) | 
						
							| 40 | 35 38 39 | 3syl | ⊢ ( ( 𝜑  ∧  ( ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) )  ∈  ℕ  ∧  𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) –1-1-onto→ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) )  →  𝐹 : 𝐴 ⟶ ran  𝐹 ) | 
						
							| 41 | 5 | adantr | ⊢ ( ( 𝜑  ∧  ( ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) )  ∈  ℕ  ∧  𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) –1-1-onto→ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) )  →  𝐺  ∈  Mnd ) | 
						
							| 42 | 1 | submacs | ⊢ ( 𝐺  ∈  Mnd  →  ( SubMnd ‘ 𝐺 )  ∈  ( ACS ‘ 𝐵 ) ) | 
						
							| 43 |  | acsmre | ⊢ ( ( SubMnd ‘ 𝐺 )  ∈  ( ACS ‘ 𝐵 )  →  ( SubMnd ‘ 𝐺 )  ∈  ( Moore ‘ 𝐵 ) ) | 
						
							| 44 | 41 42 43 | 3syl | ⊢ ( ( 𝜑  ∧  ( ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) )  ∈  ℕ  ∧  𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) –1-1-onto→ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) )  →  ( SubMnd ‘ 𝐺 )  ∈  ( Moore ‘ 𝐵 ) ) | 
						
							| 45 |  | eqid | ⊢ ( mrCls ‘ ( SubMnd ‘ 𝐺 ) )  =  ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) | 
						
							| 46 | 35 | frnd | ⊢ ( ( 𝜑  ∧  ( ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) )  ∈  ℕ  ∧  𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) –1-1-onto→ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) )  →  ran  𝐹  ⊆  𝐵 ) | 
						
							| 47 | 44 45 46 | mrcssidd | ⊢ ( ( 𝜑  ∧  ( ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) )  ∈  ℕ  ∧  𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) –1-1-onto→ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) )  →  ran  𝐹  ⊆  ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran  𝐹 ) ) | 
						
							| 48 | 40 47 | fssd | ⊢ ( ( 𝜑  ∧  ( ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) )  ∈  ℕ  ∧  𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) –1-1-onto→ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) )  →  𝐹 : 𝐴 ⟶ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran  𝐹 ) ) | 
						
							| 49 |  | f1of1 | ⊢ ( 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) –1-1-onto→ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) )  →  𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) –1-1→ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) | 
						
							| 50 | 49 | ad2antll | ⊢ ( ( 𝜑  ∧  ( ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) )  ∈  ℕ  ∧  𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) –1-1-onto→ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) )  →  𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) –1-1→ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) | 
						
							| 51 |  | cnvimass | ⊢ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) )  ⊆  dom  𝐹 | 
						
							| 52 | 51 35 | fssdm | ⊢ ( ( 𝜑  ∧  ( ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) )  ∈  ℕ  ∧  𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) –1-1-onto→ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) )  →  ( ◡ 𝐹  “  ( V  ∖  {  0  } ) )  ⊆  𝐴 ) | 
						
							| 53 |  | f1ss | ⊢ ( ( 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) –1-1→ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) )  ∧  ( ◡ 𝐹  “  ( V  ∖  {  0  } ) )  ⊆  𝐴 )  →  𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) –1-1→ 𝐴 ) | 
						
							| 54 | 50 52 53 | syl2anc | ⊢ ( ( 𝜑  ∧  ( ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) )  ∈  ℕ  ∧  𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) –1-1-onto→ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) )  →  𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) –1-1→ 𝐴 ) | 
						
							| 55 |  | f1f | ⊢ ( 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) –1-1→ 𝐴  →  𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) ⟶ 𝐴 ) | 
						
							| 56 | 54 55 | syl | ⊢ ( ( 𝜑  ∧  ( ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) )  ∈  ℕ  ∧  𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) –1-1-onto→ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) )  →  𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) ⟶ 𝐴 ) | 
						
							| 57 |  | fco | ⊢ ( ( 𝐹 : 𝐴 ⟶ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran  𝐹 )  ∧  𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) ⟶ 𝐴 )  →  ( 𝐹  ∘  𝑓 ) : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) ⟶ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran  𝐹 ) ) | 
						
							| 58 | 48 56 57 | syl2anc | ⊢ ( ( 𝜑  ∧  ( ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) )  ∈  ℕ  ∧  𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) –1-1-onto→ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) )  →  ( 𝐹  ∘  𝑓 ) : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) ⟶ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran  𝐹 ) ) | 
						
							| 59 | 58 | ffvelcdmda | ⊢ ( ( ( 𝜑  ∧  ( ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) )  ∈  ℕ  ∧  𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) –1-1-onto→ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) )  ∧  𝑥  ∈  ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) )  →  ( ( 𝐹  ∘  𝑓 ) ‘ 𝑥 )  ∈  ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran  𝐹 ) ) | 
						
							| 60 | 45 | mrccl | ⊢ ( ( ( SubMnd ‘ 𝐺 )  ∈  ( Moore ‘ 𝐵 )  ∧  ran  𝐹  ⊆  𝐵 )  →  ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran  𝐹 )  ∈  ( SubMnd ‘ 𝐺 ) ) | 
						
							| 61 | 44 46 60 | syl2anc | ⊢ ( ( 𝜑  ∧  ( ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) )  ∈  ℕ  ∧  𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) –1-1-onto→ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) )  →  ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran  𝐹 )  ∈  ( SubMnd ‘ 𝐺 ) ) | 
						
							| 62 | 4 | oppgsubm | ⊢ ( SubMnd ‘ 𝐺 )  =  ( SubMnd ‘ 𝑂 ) | 
						
							| 63 | 61 62 | eleqtrdi | ⊢ ( ( 𝜑  ∧  ( ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) )  ∈  ℕ  ∧  𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) –1-1-onto→ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) )  →  ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran  𝐹 )  ∈  ( SubMnd ‘ 𝑂 ) ) | 
						
							| 64 |  | eqid | ⊢ ( +g ‘ 𝑂 )  =  ( +g ‘ 𝑂 ) | 
						
							| 65 | 64 | submcl | ⊢ ( ( ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran  𝐹 )  ∈  ( SubMnd ‘ 𝑂 )  ∧  𝑥  ∈  ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran  𝐹 )  ∧  𝑦  ∈  ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran  𝐹 ) )  →  ( 𝑥 ( +g ‘ 𝑂 ) 𝑦 )  ∈  ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran  𝐹 ) ) | 
						
							| 66 | 65 | 3expb | ⊢ ( ( ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran  𝐹 )  ∈  ( SubMnd ‘ 𝑂 )  ∧  ( 𝑥  ∈  ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran  𝐹 )  ∧  𝑦  ∈  ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran  𝐹 ) ) )  →  ( 𝑥 ( +g ‘ 𝑂 ) 𝑦 )  ∈  ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran  𝐹 ) ) | 
						
							| 67 | 63 66 | sylan | ⊢ ( ( ( 𝜑  ∧  ( ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) )  ∈  ℕ  ∧  𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) –1-1-onto→ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) )  ∧  ( 𝑥  ∈  ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran  𝐹 )  ∧  𝑦  ∈  ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran  𝐹 ) ) )  →  ( 𝑥 ( +g ‘ 𝑂 ) 𝑦 )  ∈  ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran  𝐹 ) ) | 
						
							| 68 |  | eqid | ⊢ ( +g ‘ 𝐺 )  =  ( +g ‘ 𝐺 ) | 
						
							| 69 | 68 4 64 | oppgplus | ⊢ ( 𝑥 ( +g ‘ 𝑂 ) 𝑦 )  =  ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) | 
						
							| 70 | 8 | adantr | ⊢ ( ( 𝜑  ∧  ( ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) )  ∈  ℕ  ∧  𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) –1-1-onto→ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) )  →  ran  𝐹  ⊆  ( 𝑍 ‘ ran  𝐹 ) ) | 
						
							| 71 |  | eqid | ⊢ ( 𝐺  ↾s  ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran  𝐹 ) )  =  ( 𝐺  ↾s  ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran  𝐹 ) ) | 
						
							| 72 | 3 45 71 | cntzspan | ⊢ ( ( 𝐺  ∈  Mnd  ∧  ran  𝐹  ⊆  ( 𝑍 ‘ ran  𝐹 ) )  →  ( 𝐺  ↾s  ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran  𝐹 ) )  ∈  CMnd ) | 
						
							| 73 | 41 70 72 | syl2anc | ⊢ ( ( 𝜑  ∧  ( ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) )  ∈  ℕ  ∧  𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) –1-1-onto→ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) )  →  ( 𝐺  ↾s  ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran  𝐹 ) )  ∈  CMnd ) | 
						
							| 74 | 71 3 | submcmn2 | ⊢ ( ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran  𝐹 )  ∈  ( SubMnd ‘ 𝐺 )  →  ( ( 𝐺  ↾s  ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran  𝐹 ) )  ∈  CMnd  ↔  ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran  𝐹 )  ⊆  ( 𝑍 ‘ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran  𝐹 ) ) ) ) | 
						
							| 75 | 61 74 | syl | ⊢ ( ( 𝜑  ∧  ( ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) )  ∈  ℕ  ∧  𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) –1-1-onto→ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) )  →  ( ( 𝐺  ↾s  ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran  𝐹 ) )  ∈  CMnd  ↔  ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran  𝐹 )  ⊆  ( 𝑍 ‘ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran  𝐹 ) ) ) ) | 
						
							| 76 | 73 75 | mpbid | ⊢ ( ( 𝜑  ∧  ( ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) )  ∈  ℕ  ∧  𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) –1-1-onto→ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) )  →  ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran  𝐹 )  ⊆  ( 𝑍 ‘ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran  𝐹 ) ) ) | 
						
							| 77 | 76 | sselda | ⊢ ( ( ( 𝜑  ∧  ( ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) )  ∈  ℕ  ∧  𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) –1-1-onto→ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) )  ∧  𝑥  ∈  ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran  𝐹 ) )  →  𝑥  ∈  ( 𝑍 ‘ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran  𝐹 ) ) ) | 
						
							| 78 | 68 3 | cntzi | ⊢ ( ( 𝑥  ∈  ( 𝑍 ‘ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran  𝐹 ) )  ∧  𝑦  ∈  ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran  𝐹 ) )  →  ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 )  =  ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) | 
						
							| 79 | 77 78 | sylan | ⊢ ( ( ( ( 𝜑  ∧  ( ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) )  ∈  ℕ  ∧  𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) –1-1-onto→ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) )  ∧  𝑥  ∈  ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran  𝐹 ) )  ∧  𝑦  ∈  ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran  𝐹 ) )  →  ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 )  =  ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) | 
						
							| 80 | 69 79 | eqtr4id | ⊢ ( ( ( ( 𝜑  ∧  ( ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) )  ∈  ℕ  ∧  𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) –1-1-onto→ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) )  ∧  𝑥  ∈  ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran  𝐹 ) )  ∧  𝑦  ∈  ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran  𝐹 ) )  →  ( 𝑥 ( +g ‘ 𝑂 ) 𝑦 )  =  ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) | 
						
							| 81 | 80 | anasss | ⊢ ( ( ( 𝜑  ∧  ( ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) )  ∈  ℕ  ∧  𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) –1-1-onto→ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) )  ∧  ( 𝑥  ∈  ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran  𝐹 )  ∧  𝑦  ∈  ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran  𝐹 ) ) )  →  ( 𝑥 ( +g ‘ 𝑂 ) 𝑦 )  =  ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) | 
						
							| 82 | 34 59 67 81 | seqfeq4 | ⊢ ( ( 𝜑  ∧  ( ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) )  ∈  ℕ  ∧  𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) –1-1-onto→ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) )  →  ( seq 1 ( ( +g ‘ 𝑂 ) ,  ( 𝐹  ∘  𝑓 ) ) ‘ ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) )  =  ( seq 1 ( ( +g ‘ 𝐺 ) ,  ( 𝐹  ∘  𝑓 ) ) ‘ ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) ) | 
						
							| 83 | 4 1 | oppgbas | ⊢ 𝐵  =  ( Base ‘ 𝑂 ) | 
						
							| 84 |  | eqid | ⊢ ( Cntz ‘ 𝑂 )  =  ( Cntz ‘ 𝑂 ) | 
						
							| 85 | 41 10 | syl | ⊢ ( ( 𝜑  ∧  ( ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) )  ∈  ℕ  ∧  𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) –1-1-onto→ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) )  →  𝑂  ∈  Mnd ) | 
						
							| 86 | 6 | adantr | ⊢ ( ( 𝜑  ∧  ( ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) )  ∈  ℕ  ∧  𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) –1-1-onto→ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) )  →  𝐴  ∈  𝑉 ) | 
						
							| 87 | 4 3 | oppgcntz | ⊢ ( 𝑍 ‘ ran  𝐹 )  =  ( ( Cntz ‘ 𝑂 ) ‘ ran  𝐹 ) | 
						
							| 88 | 70 87 | sseqtrdi | ⊢ ( ( 𝜑  ∧  ( ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) )  ∈  ℕ  ∧  𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) –1-1-onto→ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) )  →  ran  𝐹  ⊆  ( ( Cntz ‘ 𝑂 ) ‘ ran  𝐹 ) ) | 
						
							| 89 |  | suppssdm | ⊢ ( 𝐹  supp   0  )  ⊆  dom  𝐹 | 
						
							| 90 | 24 89 | eqsstrrdi | ⊢ ( 𝜑  →  ( ◡ 𝐹  “  ( V  ∖  {  0  } ) )  ⊆  dom  𝐹 ) | 
						
							| 91 | 7 90 | fssdmd | ⊢ ( 𝜑  →  ( ◡ 𝐹  “  ( V  ∖  {  0  } ) )  ⊆  𝐴 ) | 
						
							| 92 | 91 | adantr | ⊢ ( ( 𝜑  ∧  ( ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) )  ∈  ℕ  ∧  𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) –1-1-onto→ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) )  →  ( ◡ 𝐹  “  ( V  ∖  {  0  } ) )  ⊆  𝐴 ) | 
						
							| 93 | 50 92 53 | syl2anc | ⊢ ( ( 𝜑  ∧  ( ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) )  ∈  ℕ  ∧  𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) –1-1-onto→ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) )  →  𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) –1-1→ 𝐴 ) | 
						
							| 94 | 25 | adantr | ⊢ ( ( 𝜑  ∧  ( ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) )  ∈  ℕ  ∧  𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) –1-1-onto→ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) )  →  ( ( 𝐹  supp   0  )  ⊆  ( ◡ 𝐹  “  ( V  ∖  {  0  } ) )  ↔  ( ◡ 𝐹  “  ( V  ∖  {  0  } ) )  ⊆  ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) | 
						
							| 95 | 21 94 | mpbiri | ⊢ ( ( 𝜑  ∧  ( ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) )  ∈  ℕ  ∧  𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) –1-1-onto→ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) )  →  ( 𝐹  supp   0  )  ⊆  ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) | 
						
							| 96 |  | f1ofo | ⊢ ( 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) –1-1-onto→ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) )  →  𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) –onto→ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) | 
						
							| 97 |  | forn | ⊢ ( 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) –onto→ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) )  →  ran  𝑓  =  ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) | 
						
							| 98 | 96 97 | syl | ⊢ ( 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) –1-1-onto→ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) )  →  ran  𝑓  =  ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) | 
						
							| 99 | 98 | sseq2d | ⊢ ( 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) –1-1-onto→ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) )  →  ( ( 𝐹  supp   0  )  ⊆  ran  𝑓  ↔  ( 𝐹  supp   0  )  ⊆  ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) | 
						
							| 100 | 99 | ad2antll | ⊢ ( ( 𝜑  ∧  ( ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) )  ∈  ℕ  ∧  𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) –1-1-onto→ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) )  →  ( ( 𝐹  supp   0  )  ⊆  ran  𝑓  ↔  ( 𝐹  supp   0  )  ⊆  ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) | 
						
							| 101 | 95 100 | mpbird | ⊢ ( ( 𝜑  ∧  ( ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) )  ∈  ℕ  ∧  𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) –1-1-onto→ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) )  →  ( 𝐹  supp   0  )  ⊆  ran  𝑓 ) | 
						
							| 102 |  | eqid | ⊢ ( ( 𝐹  ∘  𝑓 )  supp   0  )  =  ( ( 𝐹  ∘  𝑓 )  supp   0  ) | 
						
							| 103 | 83 12 64 84 85 86 35 88 32 93 101 102 | gsumval3 | ⊢ ( ( 𝜑  ∧  ( ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) )  ∈  ℕ  ∧  𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) –1-1-onto→ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) )  →  ( 𝑂  Σg  𝐹 )  =  ( seq 1 ( ( +g ‘ 𝑂 ) ,  ( 𝐹  ∘  𝑓 ) ) ‘ ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) ) | 
						
							| 104 | 26 | adantr | ⊢ ( ( 𝜑  ∧  ( ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) )  ∈  ℕ  ∧  𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) –1-1-onto→ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) )  →  ( 𝐹  supp   0  )  ⊆  ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) | 
						
							| 105 | 104 100 | mpbird | ⊢ ( ( 𝜑  ∧  ( ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) )  ∈  ℕ  ∧  𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) –1-1-onto→ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) )  →  ( 𝐹  supp   0  )  ⊆  ran  𝑓 ) | 
						
							| 106 | 1 2 68 3 41 86 35 70 32 93 105 102 | gsumval3 | ⊢ ( ( 𝜑  ∧  ( ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) )  ∈  ℕ  ∧  𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) –1-1-onto→ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) )  →  ( 𝐺  Σg  𝐹 )  =  ( seq 1 ( ( +g ‘ 𝐺 ) ,  ( 𝐹  ∘  𝑓 ) ) ‘ ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) ) | 
						
							| 107 | 82 103 106 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  ( ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) )  ∈  ℕ  ∧  𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) –1-1-onto→ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) )  →  ( 𝑂  Σg  𝐹 )  =  ( 𝐺  Σg  𝐹 ) ) | 
						
							| 108 | 107 | expr | ⊢ ( ( 𝜑  ∧  ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) )  ∈  ℕ )  →  ( 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) –1-1-onto→ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) )  →  ( 𝑂  Σg  𝐹 )  =  ( 𝐺  Σg  𝐹 ) ) ) | 
						
							| 109 | 108 | exlimdv | ⊢ ( ( 𝜑  ∧  ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) )  ∈  ℕ )  →  ( ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) –1-1-onto→ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) )  →  ( 𝑂  Σg  𝐹 )  =  ( 𝐺  Σg  𝐹 ) ) ) | 
						
							| 110 | 109 | expimpd | ⊢ ( 𝜑  →  ( ( ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) )  ∈  ℕ  ∧  ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) –1-1-onto→ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) )  →  ( 𝑂  Σg  𝐹 )  =  ( 𝐺  Σg  𝐹 ) ) ) | 
						
							| 111 | 9 | fsuppimpd | ⊢ ( 𝜑  →  ( 𝐹  supp   0  )  ∈  Fin ) | 
						
							| 112 | 24 111 | eqeltrrd | ⊢ ( 𝜑  →  ( ◡ 𝐹  “  ( V  ∖  {  0  } ) )  ∈  Fin ) | 
						
							| 113 |  | fz1f1o | ⊢ ( ( ◡ 𝐹  “  ( V  ∖  {  0  } ) )  ∈  Fin  →  ( ( ◡ 𝐹  “  ( V  ∖  {  0  } ) )  =  ∅  ∨  ( ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) )  ∈  ℕ  ∧  ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) –1-1-onto→ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) ) | 
						
							| 114 | 112 113 | syl | ⊢ ( 𝜑  →  ( ( ◡ 𝐹  “  ( V  ∖  {  0  } ) )  =  ∅  ∨  ( ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) )  ∈  ℕ  ∧  ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) –1-1-onto→ ( ◡ 𝐹  “  ( V  ∖  {  0  } ) ) ) ) ) | 
						
							| 115 | 31 110 114 | mpjaod | ⊢ ( 𝜑  →  ( 𝑂  Σg  𝐹 )  =  ( 𝐺  Σg  𝐹 ) ) |