Step |
Hyp |
Ref |
Expression |
1 |
|
gsumzoppg.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
gsumzoppg.0 |
⊢ 0 = ( 0g ‘ 𝐺 ) |
3 |
|
gsumzoppg.z |
⊢ 𝑍 = ( Cntz ‘ 𝐺 ) |
4 |
|
gsumzoppg.o |
⊢ 𝑂 = ( oppg ‘ 𝐺 ) |
5 |
|
gsumzoppg.g |
⊢ ( 𝜑 → 𝐺 ∈ Mnd ) |
6 |
|
gsumzoppg.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
7 |
|
gsumzoppg.f |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
8 |
|
gsumzoppg.c |
⊢ ( 𝜑 → ran 𝐹 ⊆ ( 𝑍 ‘ ran 𝐹 ) ) |
9 |
|
gsumzoppg.n |
⊢ ( 𝜑 → 𝐹 finSupp 0 ) |
10 |
4
|
oppgmnd |
⊢ ( 𝐺 ∈ Mnd → 𝑂 ∈ Mnd ) |
11 |
5 10
|
syl |
⊢ ( 𝜑 → 𝑂 ∈ Mnd ) |
12 |
4 2
|
oppgid |
⊢ 0 = ( 0g ‘ 𝑂 ) |
13 |
12
|
gsumz |
⊢ ( ( 𝑂 ∈ Mnd ∧ 𝐴 ∈ 𝑉 ) → ( 𝑂 Σg ( 𝑘 ∈ 𝐴 ↦ 0 ) ) = 0 ) |
14 |
11 6 13
|
syl2anc |
⊢ ( 𝜑 → ( 𝑂 Σg ( 𝑘 ∈ 𝐴 ↦ 0 ) ) = 0 ) |
15 |
2
|
gsumz |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑉 ) → ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ 0 ) ) = 0 ) |
16 |
5 6 15
|
syl2anc |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ 0 ) ) = 0 ) |
17 |
14 16
|
eqtr4d |
⊢ ( 𝜑 → ( 𝑂 Σg ( 𝑘 ∈ 𝐴 ↦ 0 ) ) = ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ 0 ) ) ) |
18 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) = ∅ ) → ( 𝑂 Σg ( 𝑘 ∈ 𝐴 ↦ 0 ) ) = ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ 0 ) ) ) |
19 |
2
|
fvexi |
⊢ 0 ∈ V |
20 |
19
|
a1i |
⊢ ( 𝜑 → 0 ∈ V ) |
21 |
|
ssid |
⊢ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ⊆ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) |
22 |
7 6
|
fexd |
⊢ ( 𝜑 → 𝐹 ∈ V ) |
23 |
|
suppimacnv |
⊢ ( ( 𝐹 ∈ V ∧ 0 ∈ V ) → ( 𝐹 supp 0 ) = ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) |
24 |
22 19 23
|
sylancl |
⊢ ( 𝜑 → ( 𝐹 supp 0 ) = ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) |
25 |
24
|
sseq1d |
⊢ ( 𝜑 → ( ( 𝐹 supp 0 ) ⊆ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ↔ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ⊆ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) |
26 |
21 25
|
mpbiri |
⊢ ( 𝜑 → ( 𝐹 supp 0 ) ⊆ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) |
27 |
7 6 20 26
|
gsumcllem |
⊢ ( ( 𝜑 ∧ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) = ∅ ) → 𝐹 = ( 𝑘 ∈ 𝐴 ↦ 0 ) ) |
28 |
27
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) = ∅ ) → ( 𝑂 Σg 𝐹 ) = ( 𝑂 Σg ( 𝑘 ∈ 𝐴 ↦ 0 ) ) ) |
29 |
27
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) = ∅ ) → ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ 0 ) ) ) |
30 |
18 28 29
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) = ∅ ) → ( 𝑂 Σg 𝐹 ) = ( 𝐺 Σg 𝐹 ) ) |
31 |
30
|
ex |
⊢ ( 𝜑 → ( ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) = ∅ → ( 𝑂 Σg 𝐹 ) = ( 𝐺 Σg 𝐹 ) ) ) |
32 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ) |
33 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
34 |
32 33
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ( ℤ≥ ‘ 1 ) ) |
35 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → 𝐹 : 𝐴 ⟶ 𝐵 ) |
36 |
|
ffn |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → 𝐹 Fn 𝐴 ) |
37 |
|
dffn4 |
⊢ ( 𝐹 Fn 𝐴 ↔ 𝐹 : 𝐴 –onto→ ran 𝐹 ) |
38 |
36 37
|
sylib |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → 𝐹 : 𝐴 –onto→ ran 𝐹 ) |
39 |
|
fof |
⊢ ( 𝐹 : 𝐴 –onto→ ran 𝐹 → 𝐹 : 𝐴 ⟶ ran 𝐹 ) |
40 |
35 38 39
|
3syl |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → 𝐹 : 𝐴 ⟶ ran 𝐹 ) |
41 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → 𝐺 ∈ Mnd ) |
42 |
1
|
submacs |
⊢ ( 𝐺 ∈ Mnd → ( SubMnd ‘ 𝐺 ) ∈ ( ACS ‘ 𝐵 ) ) |
43 |
|
acsmre |
⊢ ( ( SubMnd ‘ 𝐺 ) ∈ ( ACS ‘ 𝐵 ) → ( SubMnd ‘ 𝐺 ) ∈ ( Moore ‘ 𝐵 ) ) |
44 |
41 42 43
|
3syl |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → ( SubMnd ‘ 𝐺 ) ∈ ( Moore ‘ 𝐵 ) ) |
45 |
|
eqid |
⊢ ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) = ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) |
46 |
35
|
frnd |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → ran 𝐹 ⊆ 𝐵 ) |
47 |
44 45 46
|
mrcssidd |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → ran 𝐹 ⊆ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) |
48 |
40 47
|
fssd |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → 𝐹 : 𝐴 ⟶ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) |
49 |
|
f1of1 |
⊢ ( 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) → 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) |
50 |
49
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) |
51 |
|
cnvimass |
⊢ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ⊆ dom 𝐹 |
52 |
51 35
|
fssdm |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ⊆ 𝐴 ) |
53 |
|
f1ss |
⊢ ( ( 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ∧ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ⊆ 𝐴 ) → 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1→ 𝐴 ) |
54 |
50 52 53
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1→ 𝐴 ) |
55 |
|
f1f |
⊢ ( 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1→ 𝐴 → 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) ⟶ 𝐴 ) |
56 |
54 55
|
syl |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) ⟶ 𝐴 ) |
57 |
|
fco |
⊢ ( ( 𝐹 : 𝐴 ⟶ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) ⟶ 𝐴 ) → ( 𝐹 ∘ 𝑓 ) : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) ⟶ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) |
58 |
48 56 57
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → ( 𝐹 ∘ 𝑓 ) : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) ⟶ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) |
59 |
58
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) ∧ 𝑥 ∈ ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) ) → ( ( 𝐹 ∘ 𝑓 ) ‘ 𝑥 ) ∈ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) |
60 |
45
|
mrccl |
⊢ ( ( ( SubMnd ‘ 𝐺 ) ∈ ( Moore ‘ 𝐵 ) ∧ ran 𝐹 ⊆ 𝐵 ) → ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ∈ ( SubMnd ‘ 𝐺 ) ) |
61 |
44 46 60
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ∈ ( SubMnd ‘ 𝐺 ) ) |
62 |
4
|
oppgsubm |
⊢ ( SubMnd ‘ 𝐺 ) = ( SubMnd ‘ 𝑂 ) |
63 |
61 62
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ∈ ( SubMnd ‘ 𝑂 ) ) |
64 |
|
eqid |
⊢ ( +g ‘ 𝑂 ) = ( +g ‘ 𝑂 ) |
65 |
64
|
submcl |
⊢ ( ( ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ∈ ( SubMnd ‘ 𝑂 ) ∧ 𝑥 ∈ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ∧ 𝑦 ∈ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) → ( 𝑥 ( +g ‘ 𝑂 ) 𝑦 ) ∈ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) |
66 |
65
|
3expb |
⊢ ( ( ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ∈ ( SubMnd ‘ 𝑂 ) ∧ ( 𝑥 ∈ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ∧ 𝑦 ∈ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) ) → ( 𝑥 ( +g ‘ 𝑂 ) 𝑦 ) ∈ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) |
67 |
63 66
|
sylan |
⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) ∧ ( 𝑥 ∈ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ∧ 𝑦 ∈ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) ) → ( 𝑥 ( +g ‘ 𝑂 ) 𝑦 ) ∈ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) |
68 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
69 |
68 4 64
|
oppgplus |
⊢ ( 𝑥 ( +g ‘ 𝑂 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) |
70 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → ran 𝐹 ⊆ ( 𝑍 ‘ ran 𝐹 ) ) |
71 |
|
eqid |
⊢ ( 𝐺 ↾s ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) = ( 𝐺 ↾s ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) |
72 |
3 45 71
|
cntzspan |
⊢ ( ( 𝐺 ∈ Mnd ∧ ran 𝐹 ⊆ ( 𝑍 ‘ ran 𝐹 ) ) → ( 𝐺 ↾s ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) ∈ CMnd ) |
73 |
41 70 72
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → ( 𝐺 ↾s ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) ∈ CMnd ) |
74 |
71 3
|
submcmn2 |
⊢ ( ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ∈ ( SubMnd ‘ 𝐺 ) → ( ( 𝐺 ↾s ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) ∈ CMnd ↔ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ⊆ ( 𝑍 ‘ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) ) ) |
75 |
61 74
|
syl |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → ( ( 𝐺 ↾s ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) ∈ CMnd ↔ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ⊆ ( 𝑍 ‘ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) ) ) |
76 |
73 75
|
mpbid |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ⊆ ( 𝑍 ‘ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) ) |
77 |
76
|
sselda |
⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) ∧ 𝑥 ∈ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) → 𝑥 ∈ ( 𝑍 ‘ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) ) |
78 |
68 3
|
cntzi |
⊢ ( ( 𝑥 ∈ ( 𝑍 ‘ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) ∧ 𝑦 ∈ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) |
79 |
77 78
|
sylan |
⊢ ( ( ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) ∧ 𝑥 ∈ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) ∧ 𝑦 ∈ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) |
80 |
69 79
|
eqtr4id |
⊢ ( ( ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) ∧ 𝑥 ∈ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) ∧ 𝑦 ∈ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) → ( 𝑥 ( +g ‘ 𝑂 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) |
81 |
80
|
anasss |
⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) ∧ ( 𝑥 ∈ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ∧ 𝑦 ∈ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) ) → ( 𝑥 ( +g ‘ 𝑂 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) |
82 |
34 59 67 81
|
seqfeq4 |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → ( seq 1 ( ( +g ‘ 𝑂 ) , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) = ( seq 1 ( ( +g ‘ 𝐺 ) , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) ) |
83 |
4 1
|
oppgbas |
⊢ 𝐵 = ( Base ‘ 𝑂 ) |
84 |
|
eqid |
⊢ ( Cntz ‘ 𝑂 ) = ( Cntz ‘ 𝑂 ) |
85 |
41 10
|
syl |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → 𝑂 ∈ Mnd ) |
86 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → 𝐴 ∈ 𝑉 ) |
87 |
4 3
|
oppgcntz |
⊢ ( 𝑍 ‘ ran 𝐹 ) = ( ( Cntz ‘ 𝑂 ) ‘ ran 𝐹 ) |
88 |
70 87
|
sseqtrdi |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → ran 𝐹 ⊆ ( ( Cntz ‘ 𝑂 ) ‘ ran 𝐹 ) ) |
89 |
|
suppssdm |
⊢ ( 𝐹 supp 0 ) ⊆ dom 𝐹 |
90 |
24 89
|
eqsstrrdi |
⊢ ( 𝜑 → ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ⊆ dom 𝐹 ) |
91 |
7 90
|
fssdmd |
⊢ ( 𝜑 → ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ⊆ 𝐴 ) |
92 |
91
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ⊆ 𝐴 ) |
93 |
50 92 53
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1→ 𝐴 ) |
94 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → ( ( 𝐹 supp 0 ) ⊆ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ↔ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ⊆ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) |
95 |
21 94
|
mpbiri |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → ( 𝐹 supp 0 ) ⊆ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) |
96 |
|
f1ofo |
⊢ ( 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) → 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) |
97 |
|
forn |
⊢ ( 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) → ran 𝑓 = ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) |
98 |
96 97
|
syl |
⊢ ( 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) → ran 𝑓 = ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) |
99 |
98
|
sseq2d |
⊢ ( 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) → ( ( 𝐹 supp 0 ) ⊆ ran 𝑓 ↔ ( 𝐹 supp 0 ) ⊆ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) |
100 |
99
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → ( ( 𝐹 supp 0 ) ⊆ ran 𝑓 ↔ ( 𝐹 supp 0 ) ⊆ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) |
101 |
95 100
|
mpbird |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → ( 𝐹 supp 0 ) ⊆ ran 𝑓 ) |
102 |
|
eqid |
⊢ ( ( 𝐹 ∘ 𝑓 ) supp 0 ) = ( ( 𝐹 ∘ 𝑓 ) supp 0 ) |
103 |
83 12 64 84 85 86 35 88 32 93 101 102
|
gsumval3 |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → ( 𝑂 Σg 𝐹 ) = ( seq 1 ( ( +g ‘ 𝑂 ) , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) ) |
104 |
26
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → ( 𝐹 supp 0 ) ⊆ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) |
105 |
104 100
|
mpbird |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → ( 𝐹 supp 0 ) ⊆ ran 𝑓 ) |
106 |
1 2 68 3 41 86 35 70 32 93 105 102
|
gsumval3 |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → ( 𝐺 Σg 𝐹 ) = ( seq 1 ( ( +g ‘ 𝐺 ) , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) ) |
107 |
82 103 106
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) → ( 𝑂 Σg 𝐹 ) = ( 𝐺 Σg 𝐹 ) ) |
108 |
107
|
expr |
⊢ ( ( 𝜑 ∧ ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ) → ( 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) → ( 𝑂 Σg 𝐹 ) = ( 𝐺 Σg 𝐹 ) ) ) |
109 |
108
|
exlimdv |
⊢ ( ( 𝜑 ∧ ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ) → ( ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) → ( 𝑂 Σg 𝐹 ) = ( 𝐺 Σg 𝐹 ) ) ) |
110 |
109
|
expimpd |
⊢ ( 𝜑 → ( ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) → ( 𝑂 Σg 𝐹 ) = ( 𝐺 Σg 𝐹 ) ) ) |
111 |
9
|
fsuppimpd |
⊢ ( 𝜑 → ( 𝐹 supp 0 ) ∈ Fin ) |
112 |
24 111
|
eqeltrrd |
⊢ ( 𝜑 → ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ∈ Fin ) |
113 |
|
fz1f1o |
⊢ ( ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ∈ Fin → ( ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) = ∅ ∨ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) ) |
114 |
112 113
|
syl |
⊢ ( 𝜑 → ( ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) = ∅ ∨ ( ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ∈ ℕ ∧ ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) –1-1-onto→ ( ◡ 𝐹 “ ( V ∖ { 0 } ) ) ) ) ) |
115 |
31 110 114
|
mpjaod |
⊢ ( 𝜑 → ( 𝑂 Σg 𝐹 ) = ( 𝐺 Σg 𝐹 ) ) |