| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsumzcl.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 2 |
|
gsumzcl.0 |
⊢ 0 = ( 0g ‘ 𝐺 ) |
| 3 |
|
gsumzcl.z |
⊢ 𝑍 = ( Cntz ‘ 𝐺 ) |
| 4 |
|
gsumzcl.g |
⊢ ( 𝜑 → 𝐺 ∈ Mnd ) |
| 5 |
|
gsumzcl.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
| 6 |
|
gsumzcl.f |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 7 |
|
gsumzcl.c |
⊢ ( 𝜑 → ran 𝐹 ⊆ ( 𝑍 ‘ ran 𝐹 ) ) |
| 8 |
|
gsumzres.s |
⊢ ( 𝜑 → ( 𝐹 supp 0 ) ⊆ 𝑊 ) |
| 9 |
|
gsumzres.w |
⊢ ( 𝜑 → 𝐹 finSupp 0 ) |
| 10 |
|
inex1g |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∩ 𝑊 ) ∈ V ) |
| 11 |
5 10
|
syl |
⊢ ( 𝜑 → ( 𝐴 ∩ 𝑊 ) ∈ V ) |
| 12 |
2
|
gsumz |
⊢ ( ( 𝐺 ∈ Mnd ∧ ( 𝐴 ∩ 𝑊 ) ∈ V ) → ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 ∩ 𝑊 ) ↦ 0 ) ) = 0 ) |
| 13 |
4 11 12
|
syl2anc |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 ∩ 𝑊 ) ↦ 0 ) ) = 0 ) |
| 14 |
2
|
gsumz |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑉 ) → ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ 0 ) ) = 0 ) |
| 15 |
4 5 14
|
syl2anc |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ 0 ) ) = 0 ) |
| 16 |
13 15
|
eqtr4d |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 ∩ 𝑊 ) ↦ 0 ) ) = ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ 0 ) ) ) |
| 17 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐹 supp 0 ) = ∅ ) → ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 ∩ 𝑊 ) ↦ 0 ) ) = ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ 0 ) ) ) |
| 18 |
|
resres |
⊢ ( ( 𝐹 ↾ 𝐴 ) ↾ 𝑊 ) = ( 𝐹 ↾ ( 𝐴 ∩ 𝑊 ) ) |
| 19 |
|
ffn |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → 𝐹 Fn 𝐴 ) |
| 20 |
|
fnresdm |
⊢ ( 𝐹 Fn 𝐴 → ( 𝐹 ↾ 𝐴 ) = 𝐹 ) |
| 21 |
6 19 20
|
3syl |
⊢ ( 𝜑 → ( 𝐹 ↾ 𝐴 ) = 𝐹 ) |
| 22 |
21
|
reseq1d |
⊢ ( 𝜑 → ( ( 𝐹 ↾ 𝐴 ) ↾ 𝑊 ) = ( 𝐹 ↾ 𝑊 ) ) |
| 23 |
18 22
|
eqtr3id |
⊢ ( 𝜑 → ( 𝐹 ↾ ( 𝐴 ∩ 𝑊 ) ) = ( 𝐹 ↾ 𝑊 ) ) |
| 24 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐹 supp 0 ) = ∅ ) → ( 𝐹 ↾ ( 𝐴 ∩ 𝑊 ) ) = ( 𝐹 ↾ 𝑊 ) ) |
| 25 |
2
|
fvexi |
⊢ 0 ∈ V |
| 26 |
25
|
a1i |
⊢ ( 𝜑 → 0 ∈ V ) |
| 27 |
|
ssid |
⊢ ( 𝐹 supp 0 ) ⊆ ( 𝐹 supp 0 ) |
| 28 |
27
|
a1i |
⊢ ( 𝜑 → ( 𝐹 supp 0 ) ⊆ ( 𝐹 supp 0 ) ) |
| 29 |
6 5 26 28
|
gsumcllem |
⊢ ( ( 𝜑 ∧ ( 𝐹 supp 0 ) = ∅ ) → 𝐹 = ( 𝑘 ∈ 𝐴 ↦ 0 ) ) |
| 30 |
29
|
reseq1d |
⊢ ( ( 𝜑 ∧ ( 𝐹 supp 0 ) = ∅ ) → ( 𝐹 ↾ ( 𝐴 ∩ 𝑊 ) ) = ( ( 𝑘 ∈ 𝐴 ↦ 0 ) ↾ ( 𝐴 ∩ 𝑊 ) ) ) |
| 31 |
|
inss1 |
⊢ ( 𝐴 ∩ 𝑊 ) ⊆ 𝐴 |
| 32 |
|
resmpt |
⊢ ( ( 𝐴 ∩ 𝑊 ) ⊆ 𝐴 → ( ( 𝑘 ∈ 𝐴 ↦ 0 ) ↾ ( 𝐴 ∩ 𝑊 ) ) = ( 𝑘 ∈ ( 𝐴 ∩ 𝑊 ) ↦ 0 ) ) |
| 33 |
31 32
|
ax-mp |
⊢ ( ( 𝑘 ∈ 𝐴 ↦ 0 ) ↾ ( 𝐴 ∩ 𝑊 ) ) = ( 𝑘 ∈ ( 𝐴 ∩ 𝑊 ) ↦ 0 ) |
| 34 |
30 33
|
eqtrdi |
⊢ ( ( 𝜑 ∧ ( 𝐹 supp 0 ) = ∅ ) → ( 𝐹 ↾ ( 𝐴 ∩ 𝑊 ) ) = ( 𝑘 ∈ ( 𝐴 ∩ 𝑊 ) ↦ 0 ) ) |
| 35 |
24 34
|
eqtr3d |
⊢ ( ( 𝜑 ∧ ( 𝐹 supp 0 ) = ∅ ) → ( 𝐹 ↾ 𝑊 ) = ( 𝑘 ∈ ( 𝐴 ∩ 𝑊 ) ↦ 0 ) ) |
| 36 |
35
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝐹 supp 0 ) = ∅ ) → ( 𝐺 Σg ( 𝐹 ↾ 𝑊 ) ) = ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 ∩ 𝑊 ) ↦ 0 ) ) ) |
| 37 |
29
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝐹 supp 0 ) = ∅ ) → ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ 0 ) ) ) |
| 38 |
17 36 37
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝐹 supp 0 ) = ∅ ) → ( 𝐺 Σg ( 𝐹 ↾ 𝑊 ) ) = ( 𝐺 Σg 𝐹 ) ) |
| 39 |
38
|
ex |
⊢ ( 𝜑 → ( ( 𝐹 supp 0 ) = ∅ → ( 𝐺 Σg ( 𝐹 ↾ 𝑊 ) ) = ( 𝐺 Σg 𝐹 ) ) ) |
| 40 |
|
f1ofo |
⊢ ( 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) → 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –onto→ ( 𝐹 supp 0 ) ) |
| 41 |
|
forn |
⊢ ( 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –onto→ ( 𝐹 supp 0 ) → ran 𝑓 = ( 𝐹 supp 0 ) ) |
| 42 |
40 41
|
syl |
⊢ ( 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) → ran 𝑓 = ( 𝐹 supp 0 ) ) |
| 43 |
42
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → ran 𝑓 = ( 𝐹 supp 0 ) ) |
| 44 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → ( 𝐹 supp 0 ) ⊆ 𝑊 ) |
| 45 |
43 44
|
eqsstrd |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → ran 𝑓 ⊆ 𝑊 ) |
| 46 |
|
cores |
⊢ ( ran 𝑓 ⊆ 𝑊 → ( ( 𝐹 ↾ 𝑊 ) ∘ 𝑓 ) = ( 𝐹 ∘ 𝑓 ) ) |
| 47 |
45 46
|
syl |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → ( ( 𝐹 ↾ 𝑊 ) ∘ 𝑓 ) = ( 𝐹 ∘ 𝑓 ) ) |
| 48 |
47
|
seqeq3d |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → seq 1 ( ( +g ‘ 𝐺 ) , ( ( 𝐹 ↾ 𝑊 ) ∘ 𝑓 ) ) = seq 1 ( ( +g ‘ 𝐺 ) , ( 𝐹 ∘ 𝑓 ) ) ) |
| 49 |
48
|
fveq1d |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → ( seq 1 ( ( +g ‘ 𝐺 ) , ( ( 𝐹 ↾ 𝑊 ) ∘ 𝑓 ) ) ‘ ( ♯ ‘ ( 𝐹 supp 0 ) ) ) = ( seq 1 ( ( +g ‘ 𝐺 ) , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ ( 𝐹 supp 0 ) ) ) ) |
| 50 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
| 51 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → 𝐺 ∈ Mnd ) |
| 52 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → ( 𝐴 ∩ 𝑊 ) ∈ V ) |
| 53 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 54 |
|
fssres |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ( 𝐴 ∩ 𝑊 ) ⊆ 𝐴 ) → ( 𝐹 ↾ ( 𝐴 ∩ 𝑊 ) ) : ( 𝐴 ∩ 𝑊 ) ⟶ 𝐵 ) |
| 55 |
53 31 54
|
sylancl |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → ( 𝐹 ↾ ( 𝐴 ∩ 𝑊 ) ) : ( 𝐴 ∩ 𝑊 ) ⟶ 𝐵 ) |
| 56 |
23
|
feq1d |
⊢ ( 𝜑 → ( ( 𝐹 ↾ ( 𝐴 ∩ 𝑊 ) ) : ( 𝐴 ∩ 𝑊 ) ⟶ 𝐵 ↔ ( 𝐹 ↾ 𝑊 ) : ( 𝐴 ∩ 𝑊 ) ⟶ 𝐵 ) ) |
| 57 |
56
|
biimpa |
⊢ ( ( 𝜑 ∧ ( 𝐹 ↾ ( 𝐴 ∩ 𝑊 ) ) : ( 𝐴 ∩ 𝑊 ) ⟶ 𝐵 ) → ( 𝐹 ↾ 𝑊 ) : ( 𝐴 ∩ 𝑊 ) ⟶ 𝐵 ) |
| 58 |
55 57
|
syldan |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → ( 𝐹 ↾ 𝑊 ) : ( 𝐴 ∩ 𝑊 ) ⟶ 𝐵 ) |
| 59 |
|
resss |
⊢ ( 𝐹 ↾ 𝑊 ) ⊆ 𝐹 |
| 60 |
59
|
rnssi |
⊢ ran ( 𝐹 ↾ 𝑊 ) ⊆ ran 𝐹 |
| 61 |
3
|
cntzidss |
⊢ ( ( ran 𝐹 ⊆ ( 𝑍 ‘ ran 𝐹 ) ∧ ran ( 𝐹 ↾ 𝑊 ) ⊆ ran 𝐹 ) → ran ( 𝐹 ↾ 𝑊 ) ⊆ ( 𝑍 ‘ ran ( 𝐹 ↾ 𝑊 ) ) ) |
| 62 |
7 60 61
|
sylancl |
⊢ ( 𝜑 → ran ( 𝐹 ↾ 𝑊 ) ⊆ ( 𝑍 ‘ ran ( 𝐹 ↾ 𝑊 ) ) ) |
| 63 |
62
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → ran ( 𝐹 ↾ 𝑊 ) ⊆ ( 𝑍 ‘ ran ( 𝐹 ↾ 𝑊 ) ) ) |
| 64 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ) |
| 65 |
|
f1of1 |
⊢ ( 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) → 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1→ ( 𝐹 supp 0 ) ) |
| 66 |
65
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1→ ( 𝐹 supp 0 ) ) |
| 67 |
|
suppssdm |
⊢ ( 𝐹 supp 0 ) ⊆ dom 𝐹 |
| 68 |
67 6
|
fssdm |
⊢ ( 𝜑 → ( 𝐹 supp 0 ) ⊆ 𝐴 ) |
| 69 |
68 8
|
ssind |
⊢ ( 𝜑 → ( 𝐹 supp 0 ) ⊆ ( 𝐴 ∩ 𝑊 ) ) |
| 70 |
69
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → ( 𝐹 supp 0 ) ⊆ ( 𝐴 ∩ 𝑊 ) ) |
| 71 |
|
f1ss |
⊢ ( ( 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1→ ( 𝐹 supp 0 ) ∧ ( 𝐹 supp 0 ) ⊆ ( 𝐴 ∩ 𝑊 ) ) → 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1→ ( 𝐴 ∩ 𝑊 ) ) |
| 72 |
66 70 71
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1→ ( 𝐴 ∩ 𝑊 ) ) |
| 73 |
6 5
|
fexd |
⊢ ( 𝜑 → 𝐹 ∈ V ) |
| 74 |
|
ressuppss |
⊢ ( ( 𝐹 ∈ V ∧ 0 ∈ V ) → ( ( 𝐹 ↾ 𝑊 ) supp 0 ) ⊆ ( 𝐹 supp 0 ) ) |
| 75 |
73 25 74
|
sylancl |
⊢ ( 𝜑 → ( ( 𝐹 ↾ 𝑊 ) supp 0 ) ⊆ ( 𝐹 supp 0 ) ) |
| 76 |
|
sseq2 |
⊢ ( ran 𝑓 = ( 𝐹 supp 0 ) → ( ( ( 𝐹 ↾ 𝑊 ) supp 0 ) ⊆ ran 𝑓 ↔ ( ( 𝐹 ↾ 𝑊 ) supp 0 ) ⊆ ( 𝐹 supp 0 ) ) ) |
| 77 |
75 76
|
imbitrrid |
⊢ ( ran 𝑓 = ( 𝐹 supp 0 ) → ( 𝜑 → ( ( 𝐹 ↾ 𝑊 ) supp 0 ) ⊆ ran 𝑓 ) ) |
| 78 |
40 41 77
|
3syl |
⊢ ( 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) → ( 𝜑 → ( ( 𝐹 ↾ 𝑊 ) supp 0 ) ⊆ ran 𝑓 ) ) |
| 79 |
78
|
adantl |
⊢ ( ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) → ( 𝜑 → ( ( 𝐹 ↾ 𝑊 ) supp 0 ) ⊆ ran 𝑓 ) ) |
| 80 |
79
|
impcom |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → ( ( 𝐹 ↾ 𝑊 ) supp 0 ) ⊆ ran 𝑓 ) |
| 81 |
|
eqid |
⊢ ( ( ( 𝐹 ↾ 𝑊 ) ∘ 𝑓 ) supp 0 ) = ( ( ( 𝐹 ↾ 𝑊 ) ∘ 𝑓 ) supp 0 ) |
| 82 |
1 2 50 3 51 52 58 63 64 72 80 81
|
gsumval3 |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → ( 𝐺 Σg ( 𝐹 ↾ 𝑊 ) ) = ( seq 1 ( ( +g ‘ 𝐺 ) , ( ( 𝐹 ↾ 𝑊 ) ∘ 𝑓 ) ) ‘ ( ♯ ‘ ( 𝐹 supp 0 ) ) ) ) |
| 83 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → 𝐴 ∈ 𝑉 ) |
| 84 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → ran 𝐹 ⊆ ( 𝑍 ‘ ran 𝐹 ) ) |
| 85 |
68
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → ( 𝐹 supp 0 ) ⊆ 𝐴 ) |
| 86 |
|
f1ss |
⊢ ( ( 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1→ ( 𝐹 supp 0 ) ∧ ( 𝐹 supp 0 ) ⊆ 𝐴 ) → 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1→ 𝐴 ) |
| 87 |
66 85 86
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1→ 𝐴 ) |
| 88 |
27 43
|
sseqtrrid |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → ( 𝐹 supp 0 ) ⊆ ran 𝑓 ) |
| 89 |
|
eqid |
⊢ ( ( 𝐹 ∘ 𝑓 ) supp 0 ) = ( ( 𝐹 ∘ 𝑓 ) supp 0 ) |
| 90 |
1 2 50 3 51 83 53 84 64 87 88 89
|
gsumval3 |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → ( 𝐺 Σg 𝐹 ) = ( seq 1 ( ( +g ‘ 𝐺 ) , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ ( 𝐹 supp 0 ) ) ) ) |
| 91 |
49 82 90
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → ( 𝐺 Σg ( 𝐹 ↾ 𝑊 ) ) = ( 𝐺 Σg 𝐹 ) ) |
| 92 |
91
|
expr |
⊢ ( ( 𝜑 ∧ ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ) → ( 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) → ( 𝐺 Σg ( 𝐹 ↾ 𝑊 ) ) = ( 𝐺 Σg 𝐹 ) ) ) |
| 93 |
92
|
exlimdv |
⊢ ( ( 𝜑 ∧ ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ) → ( ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) → ( 𝐺 Σg ( 𝐹 ↾ 𝑊 ) ) = ( 𝐺 Σg 𝐹 ) ) ) |
| 94 |
93
|
expimpd |
⊢ ( 𝜑 → ( ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) → ( 𝐺 Σg ( 𝐹 ↾ 𝑊 ) ) = ( 𝐺 Σg 𝐹 ) ) ) |
| 95 |
|
fsuppimp |
⊢ ( 𝐹 finSupp 0 → ( Fun 𝐹 ∧ ( 𝐹 supp 0 ) ∈ Fin ) ) |
| 96 |
95
|
simprd |
⊢ ( 𝐹 finSupp 0 → ( 𝐹 supp 0 ) ∈ Fin ) |
| 97 |
|
fz1f1o |
⊢ ( ( 𝐹 supp 0 ) ∈ Fin → ( ( 𝐹 supp 0 ) = ∅ ∨ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) ) |
| 98 |
9 96 97
|
3syl |
⊢ ( 𝜑 → ( ( 𝐹 supp 0 ) = ∅ ∨ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) ) |
| 99 |
39 94 98
|
mpjaod |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝐹 ↾ 𝑊 ) ) = ( 𝐺 Σg 𝐹 ) ) |