| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							gsumzsplit.b | 
							⊢ 𝐵  =  ( Base ‘ 𝐺 )  | 
						
						
							| 2 | 
							
								
							 | 
							gsumzsplit.0 | 
							⊢  0   =  ( 0g ‘ 𝐺 )  | 
						
						
							| 3 | 
							
								
							 | 
							gsumzsplit.p | 
							⊢  +   =  ( +g ‘ 𝐺 )  | 
						
						
							| 4 | 
							
								
							 | 
							gsumzsplit.z | 
							⊢ 𝑍  =  ( Cntz ‘ 𝐺 )  | 
						
						
							| 5 | 
							
								
							 | 
							gsumzsplit.g | 
							⊢ ( 𝜑  →  𝐺  ∈  Mnd )  | 
						
						
							| 6 | 
							
								
							 | 
							gsumzsplit.a | 
							⊢ ( 𝜑  →  𝐴  ∈  𝑉 )  | 
						
						
							| 7 | 
							
								
							 | 
							gsumzsplit.f | 
							⊢ ( 𝜑  →  𝐹 : 𝐴 ⟶ 𝐵 )  | 
						
						
							| 8 | 
							
								
							 | 
							gsumzsplit.c | 
							⊢ ( 𝜑  →  ran  𝐹  ⊆  ( 𝑍 ‘ ran  𝐹 ) )  | 
						
						
							| 9 | 
							
								
							 | 
							gsumzsplit.w | 
							⊢ ( 𝜑  →  𝐹  finSupp   0  )  | 
						
						
							| 10 | 
							
								
							 | 
							gsumzsplit.i | 
							⊢ ( 𝜑  →  ( 𝐶  ∩  𝐷 )  =  ∅ )  | 
						
						
							| 11 | 
							
								
							 | 
							gsumzsplit.u | 
							⊢ ( 𝜑  →  𝐴  =  ( 𝐶  ∪  𝐷 ) )  | 
						
						
							| 12 | 
							
								2
							 | 
							fvexi | 
							⊢  0   ∈  V  | 
						
						
							| 13 | 
							
								12
							 | 
							a1i | 
							⊢ ( 𝜑  →   0   ∈  V )  | 
						
						
							| 14 | 
							
								7 6 13 9
							 | 
							fsuppmptif | 
							⊢ ( 𝜑  →  ( 𝑘  ∈  𝐴  ↦  if ( 𝑘  ∈  𝐶 ,  ( 𝐹 ‘ 𝑘 ) ,   0  ) )  finSupp   0  )  | 
						
						
							| 15 | 
							
								7 6 13 9
							 | 
							fsuppmptif | 
							⊢ ( 𝜑  →  ( 𝑘  ∈  𝐴  ↦  if ( 𝑘  ∈  𝐷 ,  ( 𝐹 ‘ 𝑘 ) ,   0  ) )  finSupp   0  )  | 
						
						
							| 16 | 
							
								1
							 | 
							submacs | 
							⊢ ( 𝐺  ∈  Mnd  →  ( SubMnd ‘ 𝐺 )  ∈  ( ACS ‘ 𝐵 ) )  | 
						
						
							| 17 | 
							
								
							 | 
							acsmre | 
							⊢ ( ( SubMnd ‘ 𝐺 )  ∈  ( ACS ‘ 𝐵 )  →  ( SubMnd ‘ 𝐺 )  ∈  ( Moore ‘ 𝐵 ) )  | 
						
						
							| 18 | 
							
								5 16 17
							 | 
							3syl | 
							⊢ ( 𝜑  →  ( SubMnd ‘ 𝐺 )  ∈  ( Moore ‘ 𝐵 ) )  | 
						
						
							| 19 | 
							
								7
							 | 
							frnd | 
							⊢ ( 𝜑  →  ran  𝐹  ⊆  𝐵 )  | 
						
						
							| 20 | 
							
								
							 | 
							eqid | 
							⊢ ( mrCls ‘ ( SubMnd ‘ 𝐺 ) )  =  ( mrCls ‘ ( SubMnd ‘ 𝐺 ) )  | 
						
						
							| 21 | 
							
								20
							 | 
							mrccl | 
							⊢ ( ( ( SubMnd ‘ 𝐺 )  ∈  ( Moore ‘ 𝐵 )  ∧  ran  𝐹  ⊆  𝐵 )  →  ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran  𝐹 )  ∈  ( SubMnd ‘ 𝐺 ) )  | 
						
						
							| 22 | 
							
								18 19 21
							 | 
							syl2anc | 
							⊢ ( 𝜑  →  ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran  𝐹 )  ∈  ( SubMnd ‘ 𝐺 ) )  | 
						
						
							| 23 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝐺  ↾s  ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran  𝐹 ) )  =  ( 𝐺  ↾s  ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran  𝐹 ) )  | 
						
						
							| 24 | 
							
								4 20 23
							 | 
							cntzspan | 
							⊢ ( ( 𝐺  ∈  Mnd  ∧  ran  𝐹  ⊆  ( 𝑍 ‘ ran  𝐹 ) )  →  ( 𝐺  ↾s  ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran  𝐹 ) )  ∈  CMnd )  | 
						
						
							| 25 | 
							
								5 8 24
							 | 
							syl2anc | 
							⊢ ( 𝜑  →  ( 𝐺  ↾s  ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran  𝐹 ) )  ∈  CMnd )  | 
						
						
							| 26 | 
							
								23 4
							 | 
							submcmn2 | 
							⊢ ( ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran  𝐹 )  ∈  ( SubMnd ‘ 𝐺 )  →  ( ( 𝐺  ↾s  ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran  𝐹 ) )  ∈  CMnd  ↔  ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran  𝐹 )  ⊆  ( 𝑍 ‘ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran  𝐹 ) ) ) )  | 
						
						
							| 27 | 
							
								22 26
							 | 
							syl | 
							⊢ ( 𝜑  →  ( ( 𝐺  ↾s  ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran  𝐹 ) )  ∈  CMnd  ↔  ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran  𝐹 )  ⊆  ( 𝑍 ‘ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran  𝐹 ) ) ) )  | 
						
						
							| 28 | 
							
								25 27
							 | 
							mpbid | 
							⊢ ( 𝜑  →  ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran  𝐹 )  ⊆  ( 𝑍 ‘ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran  𝐹 ) ) )  | 
						
						
							| 29 | 
							
								18 20 19
							 | 
							mrcssidd | 
							⊢ ( 𝜑  →  ran  𝐹  ⊆  ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran  𝐹 ) )  | 
						
						
							| 30 | 
							
								29
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  ran  𝐹  ⊆  ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran  𝐹 ) )  | 
						
						
							| 31 | 
							
								7
							 | 
							ffnd | 
							⊢ ( 𝜑  →  𝐹  Fn  𝐴 )  | 
						
						
							| 32 | 
							
								
							 | 
							fnfvelrn | 
							⊢ ( ( 𝐹  Fn  𝐴  ∧  𝑘  ∈  𝐴 )  →  ( 𝐹 ‘ 𝑘 )  ∈  ran  𝐹 )  | 
						
						
							| 33 | 
							
								31 32
							 | 
							sylan | 
							⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  ( 𝐹 ‘ 𝑘 )  ∈  ran  𝐹 )  | 
						
						
							| 34 | 
							
								30 33
							 | 
							sseldd | 
							⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  ( 𝐹 ‘ 𝑘 )  ∈  ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran  𝐹 ) )  | 
						
						
							| 35 | 
							
								2
							 | 
							subm0cl | 
							⊢ ( ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran  𝐹 )  ∈  ( SubMnd ‘ 𝐺 )  →   0   ∈  ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran  𝐹 ) )  | 
						
						
							| 36 | 
							
								22 35
							 | 
							syl | 
							⊢ ( 𝜑  →   0   ∈  ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran  𝐹 ) )  | 
						
						
							| 37 | 
							
								36
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →   0   ∈  ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran  𝐹 ) )  | 
						
						
							| 38 | 
							
								34 37
							 | 
							ifcld | 
							⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  if ( 𝑘  ∈  𝐶 ,  ( 𝐹 ‘ 𝑘 ) ,   0  )  ∈  ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran  𝐹 ) )  | 
						
						
							| 39 | 
							
								38
							 | 
							fmpttd | 
							⊢ ( 𝜑  →  ( 𝑘  ∈  𝐴  ↦  if ( 𝑘  ∈  𝐶 ,  ( 𝐹 ‘ 𝑘 ) ,   0  ) ) : 𝐴 ⟶ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran  𝐹 ) )  | 
						
						
							| 40 | 
							
								34 37
							 | 
							ifcld | 
							⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  if ( 𝑘  ∈  𝐷 ,  ( 𝐹 ‘ 𝑘 ) ,   0  )  ∈  ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran  𝐹 ) )  | 
						
						
							| 41 | 
							
								40
							 | 
							fmpttd | 
							⊢ ( 𝜑  →  ( 𝑘  ∈  𝐴  ↦  if ( 𝑘  ∈  𝐷 ,  ( 𝐹 ‘ 𝑘 ) ,   0  ) ) : 𝐴 ⟶ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran  𝐹 ) )  | 
						
						
							| 42 | 
							
								1 2 3 4 5 6 14 15 22 28 39 41
							 | 
							gsumzadd | 
							⊢ ( 𝜑  →  ( 𝐺  Σg  ( ( 𝑘  ∈  𝐴  ↦  if ( 𝑘  ∈  𝐶 ,  ( 𝐹 ‘ 𝑘 ) ,   0  ) )  ∘f   +  ( 𝑘  ∈  𝐴  ↦  if ( 𝑘  ∈  𝐷 ,  ( 𝐹 ‘ 𝑘 ) ,   0  ) ) ) )  =  ( ( 𝐺  Σg  ( 𝑘  ∈  𝐴  ↦  if ( 𝑘  ∈  𝐶 ,  ( 𝐹 ‘ 𝑘 ) ,   0  ) ) )  +  ( 𝐺  Σg  ( 𝑘  ∈  𝐴  ↦  if ( 𝑘  ∈  𝐷 ,  ( 𝐹 ‘ 𝑘 ) ,   0  ) ) ) ) )  | 
						
						
							| 43 | 
							
								7
							 | 
							feqmptd | 
							⊢ ( 𝜑  →  𝐹  =  ( 𝑘  ∈  𝐴  ↦  ( 𝐹 ‘ 𝑘 ) ) )  | 
						
						
							| 44 | 
							
								
							 | 
							iftrue | 
							⊢ ( 𝑘  ∈  𝐶  →  if ( 𝑘  ∈  𝐶 ,  ( 𝐹 ‘ 𝑘 ) ,   0  )  =  ( 𝐹 ‘ 𝑘 ) )  | 
						
						
							| 45 | 
							
								44
							 | 
							adantl | 
							⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  ∧  𝑘  ∈  𝐶 )  →  if ( 𝑘  ∈  𝐶 ,  ( 𝐹 ‘ 𝑘 ) ,   0  )  =  ( 𝐹 ‘ 𝑘 ) )  | 
						
						
							| 46 | 
							
								
							 | 
							noel | 
							⊢ ¬  𝑘  ∈  ∅  | 
						
						
							| 47 | 
							
								
							 | 
							eleq2 | 
							⊢ ( ( 𝐶  ∩  𝐷 )  =  ∅  →  ( 𝑘  ∈  ( 𝐶  ∩  𝐷 )  ↔  𝑘  ∈  ∅ ) )  | 
						
						
							| 48 | 
							
								46 47
							 | 
							mtbiri | 
							⊢ ( ( 𝐶  ∩  𝐷 )  =  ∅  →  ¬  𝑘  ∈  ( 𝐶  ∩  𝐷 ) )  | 
						
						
							| 49 | 
							
								10 48
							 | 
							syl | 
							⊢ ( 𝜑  →  ¬  𝑘  ∈  ( 𝐶  ∩  𝐷 ) )  | 
						
						
							| 50 | 
							
								49
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  ¬  𝑘  ∈  ( 𝐶  ∩  𝐷 ) )  | 
						
						
							| 51 | 
							
								
							 | 
							elin | 
							⊢ ( 𝑘  ∈  ( 𝐶  ∩  𝐷 )  ↔  ( 𝑘  ∈  𝐶  ∧  𝑘  ∈  𝐷 ) )  | 
						
						
							| 52 | 
							
								50 51
							 | 
							sylnib | 
							⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  ¬  ( 𝑘  ∈  𝐶  ∧  𝑘  ∈  𝐷 ) )  | 
						
						
							| 53 | 
							
								
							 | 
							imnan | 
							⊢ ( ( 𝑘  ∈  𝐶  →  ¬  𝑘  ∈  𝐷 )  ↔  ¬  ( 𝑘  ∈  𝐶  ∧  𝑘  ∈  𝐷 ) )  | 
						
						
							| 54 | 
							
								52 53
							 | 
							sylibr | 
							⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  ( 𝑘  ∈  𝐶  →  ¬  𝑘  ∈  𝐷 ) )  | 
						
						
							| 55 | 
							
								54
							 | 
							imp | 
							⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  ∧  𝑘  ∈  𝐶 )  →  ¬  𝑘  ∈  𝐷 )  | 
						
						
							| 56 | 
							
								55
							 | 
							iffalsed | 
							⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  ∧  𝑘  ∈  𝐶 )  →  if ( 𝑘  ∈  𝐷 ,  ( 𝐹 ‘ 𝑘 ) ,   0  )  =   0  )  | 
						
						
							| 57 | 
							
								45 56
							 | 
							oveq12d | 
							⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  ∧  𝑘  ∈  𝐶 )  →  ( if ( 𝑘  ∈  𝐶 ,  ( 𝐹 ‘ 𝑘 ) ,   0  )  +  if ( 𝑘  ∈  𝐷 ,  ( 𝐹 ‘ 𝑘 ) ,   0  ) )  =  ( ( 𝐹 ‘ 𝑘 )  +   0  ) )  | 
						
						
							| 58 | 
							
								7
							 | 
							ffvelcdmda | 
							⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  ( 𝐹 ‘ 𝑘 )  ∈  𝐵 )  | 
						
						
							| 59 | 
							
								1 3 2
							 | 
							mndrid | 
							⊢ ( ( 𝐺  ∈  Mnd  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝐵 )  →  ( ( 𝐹 ‘ 𝑘 )  +   0  )  =  ( 𝐹 ‘ 𝑘 ) )  | 
						
						
							| 60 | 
							
								5 58 59
							 | 
							syl2an2r | 
							⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  ( ( 𝐹 ‘ 𝑘 )  +   0  )  =  ( 𝐹 ‘ 𝑘 ) )  | 
						
						
							| 61 | 
							
								60
							 | 
							adantr | 
							⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  ∧  𝑘  ∈  𝐶 )  →  ( ( 𝐹 ‘ 𝑘 )  +   0  )  =  ( 𝐹 ‘ 𝑘 ) )  | 
						
						
							| 62 | 
							
								57 61
							 | 
							eqtrd | 
							⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  ∧  𝑘  ∈  𝐶 )  →  ( if ( 𝑘  ∈  𝐶 ,  ( 𝐹 ‘ 𝑘 ) ,   0  )  +  if ( 𝑘  ∈  𝐷 ,  ( 𝐹 ‘ 𝑘 ) ,   0  ) )  =  ( 𝐹 ‘ 𝑘 ) )  | 
						
						
							| 63 | 
							
								54
							 | 
							con2d | 
							⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  ( 𝑘  ∈  𝐷  →  ¬  𝑘  ∈  𝐶 ) )  | 
						
						
							| 64 | 
							
								63
							 | 
							imp | 
							⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  ∧  𝑘  ∈  𝐷 )  →  ¬  𝑘  ∈  𝐶 )  | 
						
						
							| 65 | 
							
								64
							 | 
							iffalsed | 
							⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  ∧  𝑘  ∈  𝐷 )  →  if ( 𝑘  ∈  𝐶 ,  ( 𝐹 ‘ 𝑘 ) ,   0  )  =   0  )  | 
						
						
							| 66 | 
							
								
							 | 
							iftrue | 
							⊢ ( 𝑘  ∈  𝐷  →  if ( 𝑘  ∈  𝐷 ,  ( 𝐹 ‘ 𝑘 ) ,   0  )  =  ( 𝐹 ‘ 𝑘 ) )  | 
						
						
							| 67 | 
							
								66
							 | 
							adantl | 
							⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  ∧  𝑘  ∈  𝐷 )  →  if ( 𝑘  ∈  𝐷 ,  ( 𝐹 ‘ 𝑘 ) ,   0  )  =  ( 𝐹 ‘ 𝑘 ) )  | 
						
						
							| 68 | 
							
								65 67
							 | 
							oveq12d | 
							⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  ∧  𝑘  ∈  𝐷 )  →  ( if ( 𝑘  ∈  𝐶 ,  ( 𝐹 ‘ 𝑘 ) ,   0  )  +  if ( 𝑘  ∈  𝐷 ,  ( 𝐹 ‘ 𝑘 ) ,   0  ) )  =  (  0   +  ( 𝐹 ‘ 𝑘 ) ) )  | 
						
						
							| 69 | 
							
								1 3 2
							 | 
							mndlid | 
							⊢ ( ( 𝐺  ∈  Mnd  ∧  ( 𝐹 ‘ 𝑘 )  ∈  𝐵 )  →  (  0   +  ( 𝐹 ‘ 𝑘 ) )  =  ( 𝐹 ‘ 𝑘 ) )  | 
						
						
							| 70 | 
							
								5 58 69
							 | 
							syl2an2r | 
							⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  (  0   +  ( 𝐹 ‘ 𝑘 ) )  =  ( 𝐹 ‘ 𝑘 ) )  | 
						
						
							| 71 | 
							
								70
							 | 
							adantr | 
							⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  ∧  𝑘  ∈  𝐷 )  →  (  0   +  ( 𝐹 ‘ 𝑘 ) )  =  ( 𝐹 ‘ 𝑘 ) )  | 
						
						
							| 72 | 
							
								68 71
							 | 
							eqtrd | 
							⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  ∧  𝑘  ∈  𝐷 )  →  ( if ( 𝑘  ∈  𝐶 ,  ( 𝐹 ‘ 𝑘 ) ,   0  )  +  if ( 𝑘  ∈  𝐷 ,  ( 𝐹 ‘ 𝑘 ) ,   0  ) )  =  ( 𝐹 ‘ 𝑘 ) )  | 
						
						
							| 73 | 
							
								11
							 | 
							eleq2d | 
							⊢ ( 𝜑  →  ( 𝑘  ∈  𝐴  ↔  𝑘  ∈  ( 𝐶  ∪  𝐷 ) ) )  | 
						
						
							| 74 | 
							
								
							 | 
							elun | 
							⊢ ( 𝑘  ∈  ( 𝐶  ∪  𝐷 )  ↔  ( 𝑘  ∈  𝐶  ∨  𝑘  ∈  𝐷 ) )  | 
						
						
							| 75 | 
							
								73 74
							 | 
							bitrdi | 
							⊢ ( 𝜑  →  ( 𝑘  ∈  𝐴  ↔  ( 𝑘  ∈  𝐶  ∨  𝑘  ∈  𝐷 ) ) )  | 
						
						
							| 76 | 
							
								75
							 | 
							biimpa | 
							⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  ( 𝑘  ∈  𝐶  ∨  𝑘  ∈  𝐷 ) )  | 
						
						
							| 77 | 
							
								62 72 76
							 | 
							mpjaodan | 
							⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  ( if ( 𝑘  ∈  𝐶 ,  ( 𝐹 ‘ 𝑘 ) ,   0  )  +  if ( 𝑘  ∈  𝐷 ,  ( 𝐹 ‘ 𝑘 ) ,   0  ) )  =  ( 𝐹 ‘ 𝑘 ) )  | 
						
						
							| 78 | 
							
								77
							 | 
							mpteq2dva | 
							⊢ ( 𝜑  →  ( 𝑘  ∈  𝐴  ↦  ( if ( 𝑘  ∈  𝐶 ,  ( 𝐹 ‘ 𝑘 ) ,   0  )  +  if ( 𝑘  ∈  𝐷 ,  ( 𝐹 ‘ 𝑘 ) ,   0  ) ) )  =  ( 𝑘  ∈  𝐴  ↦  ( 𝐹 ‘ 𝑘 ) ) )  | 
						
						
							| 79 | 
							
								43 78
							 | 
							eqtr4d | 
							⊢ ( 𝜑  →  𝐹  =  ( 𝑘  ∈  𝐴  ↦  ( if ( 𝑘  ∈  𝐶 ,  ( 𝐹 ‘ 𝑘 ) ,   0  )  +  if ( 𝑘  ∈  𝐷 ,  ( 𝐹 ‘ 𝑘 ) ,   0  ) ) ) )  | 
						
						
							| 80 | 
							
								1 2
							 | 
							mndidcl | 
							⊢ ( 𝐺  ∈  Mnd  →   0   ∈  𝐵 )  | 
						
						
							| 81 | 
							
								5 80
							 | 
							syl | 
							⊢ ( 𝜑  →   0   ∈  𝐵 )  | 
						
						
							| 82 | 
							
								81
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →   0   ∈  𝐵 )  | 
						
						
							| 83 | 
							
								58 82
							 | 
							ifcld | 
							⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  if ( 𝑘  ∈  𝐶 ,  ( 𝐹 ‘ 𝑘 ) ,   0  )  ∈  𝐵 )  | 
						
						
							| 84 | 
							
								58 82
							 | 
							ifcld | 
							⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  if ( 𝑘  ∈  𝐷 ,  ( 𝐹 ‘ 𝑘 ) ,   0  )  ∈  𝐵 )  | 
						
						
							| 85 | 
							
								
							 | 
							eqidd | 
							⊢ ( 𝜑  →  ( 𝑘  ∈  𝐴  ↦  if ( 𝑘  ∈  𝐶 ,  ( 𝐹 ‘ 𝑘 ) ,   0  ) )  =  ( 𝑘  ∈  𝐴  ↦  if ( 𝑘  ∈  𝐶 ,  ( 𝐹 ‘ 𝑘 ) ,   0  ) ) )  | 
						
						
							| 86 | 
							
								
							 | 
							eqidd | 
							⊢ ( 𝜑  →  ( 𝑘  ∈  𝐴  ↦  if ( 𝑘  ∈  𝐷 ,  ( 𝐹 ‘ 𝑘 ) ,   0  ) )  =  ( 𝑘  ∈  𝐴  ↦  if ( 𝑘  ∈  𝐷 ,  ( 𝐹 ‘ 𝑘 ) ,   0  ) ) )  | 
						
						
							| 87 | 
							
								6 83 84 85 86
							 | 
							offval2 | 
							⊢ ( 𝜑  →  ( ( 𝑘  ∈  𝐴  ↦  if ( 𝑘  ∈  𝐶 ,  ( 𝐹 ‘ 𝑘 ) ,   0  ) )  ∘f   +  ( 𝑘  ∈  𝐴  ↦  if ( 𝑘  ∈  𝐷 ,  ( 𝐹 ‘ 𝑘 ) ,   0  ) ) )  =  ( 𝑘  ∈  𝐴  ↦  ( if ( 𝑘  ∈  𝐶 ,  ( 𝐹 ‘ 𝑘 ) ,   0  )  +  if ( 𝑘  ∈  𝐷 ,  ( 𝐹 ‘ 𝑘 ) ,   0  ) ) ) )  | 
						
						
							| 88 | 
							
								79 87
							 | 
							eqtr4d | 
							⊢ ( 𝜑  →  𝐹  =  ( ( 𝑘  ∈  𝐴  ↦  if ( 𝑘  ∈  𝐶 ,  ( 𝐹 ‘ 𝑘 ) ,   0  ) )  ∘f   +  ( 𝑘  ∈  𝐴  ↦  if ( 𝑘  ∈  𝐷 ,  ( 𝐹 ‘ 𝑘 ) ,   0  ) ) ) )  | 
						
						
							| 89 | 
							
								88
							 | 
							oveq2d | 
							⊢ ( 𝜑  →  ( 𝐺  Σg  𝐹 )  =  ( 𝐺  Σg  ( ( 𝑘  ∈  𝐴  ↦  if ( 𝑘  ∈  𝐶 ,  ( 𝐹 ‘ 𝑘 ) ,   0  ) )  ∘f   +  ( 𝑘  ∈  𝐴  ↦  if ( 𝑘  ∈  𝐷 ,  ( 𝐹 ‘ 𝑘 ) ,   0  ) ) ) ) )  | 
						
						
							| 90 | 
							
								43
							 | 
							reseq1d | 
							⊢ ( 𝜑  →  ( 𝐹  ↾  𝐶 )  =  ( ( 𝑘  ∈  𝐴  ↦  ( 𝐹 ‘ 𝑘 ) )  ↾  𝐶 ) )  | 
						
						
							| 91 | 
							
								
							 | 
							ssun1 | 
							⊢ 𝐶  ⊆  ( 𝐶  ∪  𝐷 )  | 
						
						
							| 92 | 
							
								91 11
							 | 
							sseqtrrid | 
							⊢ ( 𝜑  →  𝐶  ⊆  𝐴 )  | 
						
						
							| 93 | 
							
								44
							 | 
							mpteq2ia | 
							⊢ ( 𝑘  ∈  𝐶  ↦  if ( 𝑘  ∈  𝐶 ,  ( 𝐹 ‘ 𝑘 ) ,   0  ) )  =  ( 𝑘  ∈  𝐶  ↦  ( 𝐹 ‘ 𝑘 ) )  | 
						
						
							| 94 | 
							
								
							 | 
							resmpt | 
							⊢ ( 𝐶  ⊆  𝐴  →  ( ( 𝑘  ∈  𝐴  ↦  if ( 𝑘  ∈  𝐶 ,  ( 𝐹 ‘ 𝑘 ) ,   0  ) )  ↾  𝐶 )  =  ( 𝑘  ∈  𝐶  ↦  if ( 𝑘  ∈  𝐶 ,  ( 𝐹 ‘ 𝑘 ) ,   0  ) ) )  | 
						
						
							| 95 | 
							
								
							 | 
							resmpt | 
							⊢ ( 𝐶  ⊆  𝐴  →  ( ( 𝑘  ∈  𝐴  ↦  ( 𝐹 ‘ 𝑘 ) )  ↾  𝐶 )  =  ( 𝑘  ∈  𝐶  ↦  ( 𝐹 ‘ 𝑘 ) ) )  | 
						
						
							| 96 | 
							
								93 94 95
							 | 
							3eqtr4a | 
							⊢ ( 𝐶  ⊆  𝐴  →  ( ( 𝑘  ∈  𝐴  ↦  if ( 𝑘  ∈  𝐶 ,  ( 𝐹 ‘ 𝑘 ) ,   0  ) )  ↾  𝐶 )  =  ( ( 𝑘  ∈  𝐴  ↦  ( 𝐹 ‘ 𝑘 ) )  ↾  𝐶 ) )  | 
						
						
							| 97 | 
							
								92 96
							 | 
							syl | 
							⊢ ( 𝜑  →  ( ( 𝑘  ∈  𝐴  ↦  if ( 𝑘  ∈  𝐶 ,  ( 𝐹 ‘ 𝑘 ) ,   0  ) )  ↾  𝐶 )  =  ( ( 𝑘  ∈  𝐴  ↦  ( 𝐹 ‘ 𝑘 ) )  ↾  𝐶 ) )  | 
						
						
							| 98 | 
							
								90 97
							 | 
							eqtr4d | 
							⊢ ( 𝜑  →  ( 𝐹  ↾  𝐶 )  =  ( ( 𝑘  ∈  𝐴  ↦  if ( 𝑘  ∈  𝐶 ,  ( 𝐹 ‘ 𝑘 ) ,   0  ) )  ↾  𝐶 ) )  | 
						
						
							| 99 | 
							
								98
							 | 
							oveq2d | 
							⊢ ( 𝜑  →  ( 𝐺  Σg  ( 𝐹  ↾  𝐶 ) )  =  ( 𝐺  Σg  ( ( 𝑘  ∈  𝐴  ↦  if ( 𝑘  ∈  𝐶 ,  ( 𝐹 ‘ 𝑘 ) ,   0  ) )  ↾  𝐶 ) ) )  | 
						
						
							| 100 | 
							
								83
							 | 
							fmpttd | 
							⊢ ( 𝜑  →  ( 𝑘  ∈  𝐴  ↦  if ( 𝑘  ∈  𝐶 ,  ( 𝐹 ‘ 𝑘 ) ,   0  ) ) : 𝐴 ⟶ 𝐵 )  | 
						
						
							| 101 | 
							
								39
							 | 
							frnd | 
							⊢ ( 𝜑  →  ran  ( 𝑘  ∈  𝐴  ↦  if ( 𝑘  ∈  𝐶 ,  ( 𝐹 ‘ 𝑘 ) ,   0  ) )  ⊆  ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran  𝐹 ) )  | 
						
						
							| 102 | 
							
								4
							 | 
							cntzidss | 
							⊢ ( ( ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran  𝐹 )  ⊆  ( 𝑍 ‘ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran  𝐹 ) )  ∧  ran  ( 𝑘  ∈  𝐴  ↦  if ( 𝑘  ∈  𝐶 ,  ( 𝐹 ‘ 𝑘 ) ,   0  ) )  ⊆  ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran  𝐹 ) )  →  ran  ( 𝑘  ∈  𝐴  ↦  if ( 𝑘  ∈  𝐶 ,  ( 𝐹 ‘ 𝑘 ) ,   0  ) )  ⊆  ( 𝑍 ‘ ran  ( 𝑘  ∈  𝐴  ↦  if ( 𝑘  ∈  𝐶 ,  ( 𝐹 ‘ 𝑘 ) ,   0  ) ) ) )  | 
						
						
							| 103 | 
							
								28 101 102
							 | 
							syl2anc | 
							⊢ ( 𝜑  →  ran  ( 𝑘  ∈  𝐴  ↦  if ( 𝑘  ∈  𝐶 ,  ( 𝐹 ‘ 𝑘 ) ,   0  ) )  ⊆  ( 𝑍 ‘ ran  ( 𝑘  ∈  𝐴  ↦  if ( 𝑘  ∈  𝐶 ,  ( 𝐹 ‘ 𝑘 ) ,   0  ) ) ) )  | 
						
						
							| 104 | 
							
								
							 | 
							eldifn | 
							⊢ ( 𝑘  ∈  ( 𝐴  ∖  𝐶 )  →  ¬  𝑘  ∈  𝐶 )  | 
						
						
							| 105 | 
							
								104
							 | 
							adantl | 
							⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝐴  ∖  𝐶 ) )  →  ¬  𝑘  ∈  𝐶 )  | 
						
						
							| 106 | 
							
								105
							 | 
							iffalsed | 
							⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝐴  ∖  𝐶 ) )  →  if ( 𝑘  ∈  𝐶 ,  ( 𝐹 ‘ 𝑘 ) ,   0  )  =   0  )  | 
						
						
							| 107 | 
							
								106 6
							 | 
							suppss2 | 
							⊢ ( 𝜑  →  ( ( 𝑘  ∈  𝐴  ↦  if ( 𝑘  ∈  𝐶 ,  ( 𝐹 ‘ 𝑘 ) ,   0  ) )  supp   0  )  ⊆  𝐶 )  | 
						
						
							| 108 | 
							
								1 2 4 5 6 100 103 107 14
							 | 
							gsumzres | 
							⊢ ( 𝜑  →  ( 𝐺  Σg  ( ( 𝑘  ∈  𝐴  ↦  if ( 𝑘  ∈  𝐶 ,  ( 𝐹 ‘ 𝑘 ) ,   0  ) )  ↾  𝐶 ) )  =  ( 𝐺  Σg  ( 𝑘  ∈  𝐴  ↦  if ( 𝑘  ∈  𝐶 ,  ( 𝐹 ‘ 𝑘 ) ,   0  ) ) ) )  | 
						
						
							| 109 | 
							
								99 108
							 | 
							eqtrd | 
							⊢ ( 𝜑  →  ( 𝐺  Σg  ( 𝐹  ↾  𝐶 ) )  =  ( 𝐺  Σg  ( 𝑘  ∈  𝐴  ↦  if ( 𝑘  ∈  𝐶 ,  ( 𝐹 ‘ 𝑘 ) ,   0  ) ) ) )  | 
						
						
							| 110 | 
							
								43
							 | 
							reseq1d | 
							⊢ ( 𝜑  →  ( 𝐹  ↾  𝐷 )  =  ( ( 𝑘  ∈  𝐴  ↦  ( 𝐹 ‘ 𝑘 ) )  ↾  𝐷 ) )  | 
						
						
							| 111 | 
							
								
							 | 
							ssun2 | 
							⊢ 𝐷  ⊆  ( 𝐶  ∪  𝐷 )  | 
						
						
							| 112 | 
							
								111 11
							 | 
							sseqtrrid | 
							⊢ ( 𝜑  →  𝐷  ⊆  𝐴 )  | 
						
						
							| 113 | 
							
								66
							 | 
							mpteq2ia | 
							⊢ ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  ∈  𝐷 ,  ( 𝐹 ‘ 𝑘 ) ,   0  ) )  =  ( 𝑘  ∈  𝐷  ↦  ( 𝐹 ‘ 𝑘 ) )  | 
						
						
							| 114 | 
							
								
							 | 
							resmpt | 
							⊢ ( 𝐷  ⊆  𝐴  →  ( ( 𝑘  ∈  𝐴  ↦  if ( 𝑘  ∈  𝐷 ,  ( 𝐹 ‘ 𝑘 ) ,   0  ) )  ↾  𝐷 )  =  ( 𝑘  ∈  𝐷  ↦  if ( 𝑘  ∈  𝐷 ,  ( 𝐹 ‘ 𝑘 ) ,   0  ) ) )  | 
						
						
							| 115 | 
							
								
							 | 
							resmpt | 
							⊢ ( 𝐷  ⊆  𝐴  →  ( ( 𝑘  ∈  𝐴  ↦  ( 𝐹 ‘ 𝑘 ) )  ↾  𝐷 )  =  ( 𝑘  ∈  𝐷  ↦  ( 𝐹 ‘ 𝑘 ) ) )  | 
						
						
							| 116 | 
							
								113 114 115
							 | 
							3eqtr4a | 
							⊢ ( 𝐷  ⊆  𝐴  →  ( ( 𝑘  ∈  𝐴  ↦  if ( 𝑘  ∈  𝐷 ,  ( 𝐹 ‘ 𝑘 ) ,   0  ) )  ↾  𝐷 )  =  ( ( 𝑘  ∈  𝐴  ↦  ( 𝐹 ‘ 𝑘 ) )  ↾  𝐷 ) )  | 
						
						
							| 117 | 
							
								112 116
							 | 
							syl | 
							⊢ ( 𝜑  →  ( ( 𝑘  ∈  𝐴  ↦  if ( 𝑘  ∈  𝐷 ,  ( 𝐹 ‘ 𝑘 ) ,   0  ) )  ↾  𝐷 )  =  ( ( 𝑘  ∈  𝐴  ↦  ( 𝐹 ‘ 𝑘 ) )  ↾  𝐷 ) )  | 
						
						
							| 118 | 
							
								110 117
							 | 
							eqtr4d | 
							⊢ ( 𝜑  →  ( 𝐹  ↾  𝐷 )  =  ( ( 𝑘  ∈  𝐴  ↦  if ( 𝑘  ∈  𝐷 ,  ( 𝐹 ‘ 𝑘 ) ,   0  ) )  ↾  𝐷 ) )  | 
						
						
							| 119 | 
							
								118
							 | 
							oveq2d | 
							⊢ ( 𝜑  →  ( 𝐺  Σg  ( 𝐹  ↾  𝐷 ) )  =  ( 𝐺  Σg  ( ( 𝑘  ∈  𝐴  ↦  if ( 𝑘  ∈  𝐷 ,  ( 𝐹 ‘ 𝑘 ) ,   0  ) )  ↾  𝐷 ) ) )  | 
						
						
							| 120 | 
							
								84
							 | 
							fmpttd | 
							⊢ ( 𝜑  →  ( 𝑘  ∈  𝐴  ↦  if ( 𝑘  ∈  𝐷 ,  ( 𝐹 ‘ 𝑘 ) ,   0  ) ) : 𝐴 ⟶ 𝐵 )  | 
						
						
							| 121 | 
							
								41
							 | 
							frnd | 
							⊢ ( 𝜑  →  ran  ( 𝑘  ∈  𝐴  ↦  if ( 𝑘  ∈  𝐷 ,  ( 𝐹 ‘ 𝑘 ) ,   0  ) )  ⊆  ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran  𝐹 ) )  | 
						
						
							| 122 | 
							
								4
							 | 
							cntzidss | 
							⊢ ( ( ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran  𝐹 )  ⊆  ( 𝑍 ‘ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran  𝐹 ) )  ∧  ran  ( 𝑘  ∈  𝐴  ↦  if ( 𝑘  ∈  𝐷 ,  ( 𝐹 ‘ 𝑘 ) ,   0  ) )  ⊆  ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran  𝐹 ) )  →  ran  ( 𝑘  ∈  𝐴  ↦  if ( 𝑘  ∈  𝐷 ,  ( 𝐹 ‘ 𝑘 ) ,   0  ) )  ⊆  ( 𝑍 ‘ ran  ( 𝑘  ∈  𝐴  ↦  if ( 𝑘  ∈  𝐷 ,  ( 𝐹 ‘ 𝑘 ) ,   0  ) ) ) )  | 
						
						
							| 123 | 
							
								28 121 122
							 | 
							syl2anc | 
							⊢ ( 𝜑  →  ran  ( 𝑘  ∈  𝐴  ↦  if ( 𝑘  ∈  𝐷 ,  ( 𝐹 ‘ 𝑘 ) ,   0  ) )  ⊆  ( 𝑍 ‘ ran  ( 𝑘  ∈  𝐴  ↦  if ( 𝑘  ∈  𝐷 ,  ( 𝐹 ‘ 𝑘 ) ,   0  ) ) ) )  | 
						
						
							| 124 | 
							
								
							 | 
							eldifn | 
							⊢ ( 𝑘  ∈  ( 𝐴  ∖  𝐷 )  →  ¬  𝑘  ∈  𝐷 )  | 
						
						
							| 125 | 
							
								124
							 | 
							adantl | 
							⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝐴  ∖  𝐷 ) )  →  ¬  𝑘  ∈  𝐷 )  | 
						
						
							| 126 | 
							
								125
							 | 
							iffalsed | 
							⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝐴  ∖  𝐷 ) )  →  if ( 𝑘  ∈  𝐷 ,  ( 𝐹 ‘ 𝑘 ) ,   0  )  =   0  )  | 
						
						
							| 127 | 
							
								126 6
							 | 
							suppss2 | 
							⊢ ( 𝜑  →  ( ( 𝑘  ∈  𝐴  ↦  if ( 𝑘  ∈  𝐷 ,  ( 𝐹 ‘ 𝑘 ) ,   0  ) )  supp   0  )  ⊆  𝐷 )  | 
						
						
							| 128 | 
							
								1 2 4 5 6 120 123 127 15
							 | 
							gsumzres | 
							⊢ ( 𝜑  →  ( 𝐺  Σg  ( ( 𝑘  ∈  𝐴  ↦  if ( 𝑘  ∈  𝐷 ,  ( 𝐹 ‘ 𝑘 ) ,   0  ) )  ↾  𝐷 ) )  =  ( 𝐺  Σg  ( 𝑘  ∈  𝐴  ↦  if ( 𝑘  ∈  𝐷 ,  ( 𝐹 ‘ 𝑘 ) ,   0  ) ) ) )  | 
						
						
							| 129 | 
							
								119 128
							 | 
							eqtrd | 
							⊢ ( 𝜑  →  ( 𝐺  Σg  ( 𝐹  ↾  𝐷 ) )  =  ( 𝐺  Σg  ( 𝑘  ∈  𝐴  ↦  if ( 𝑘  ∈  𝐷 ,  ( 𝐹 ‘ 𝑘 ) ,   0  ) ) ) )  | 
						
						
							| 130 | 
							
								109 129
							 | 
							oveq12d | 
							⊢ ( 𝜑  →  ( ( 𝐺  Σg  ( 𝐹  ↾  𝐶 ) )  +  ( 𝐺  Σg  ( 𝐹  ↾  𝐷 ) ) )  =  ( ( 𝐺  Σg  ( 𝑘  ∈  𝐴  ↦  if ( 𝑘  ∈  𝐶 ,  ( 𝐹 ‘ 𝑘 ) ,   0  ) ) )  +  ( 𝐺  Σg  ( 𝑘  ∈  𝐴  ↦  if ( 𝑘  ∈  𝐷 ,  ( 𝐹 ‘ 𝑘 ) ,   0  ) ) ) ) )  | 
						
						
							| 131 | 
							
								42 89 130
							 | 
							3eqtr4d | 
							⊢ ( 𝜑  →  ( 𝐺  Σg  𝐹 )  =  ( ( 𝐺  Σg  ( 𝐹  ↾  𝐶 ) )  +  ( 𝐺  Σg  ( 𝐹  ↾  𝐷 ) ) ) )  |