Step |
Hyp |
Ref |
Expression |
1 |
|
gsumzsplit.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
gsumzsplit.0 |
⊢ 0 = ( 0g ‘ 𝐺 ) |
3 |
|
gsumzsplit.p |
⊢ + = ( +g ‘ 𝐺 ) |
4 |
|
gsumzsplit.z |
⊢ 𝑍 = ( Cntz ‘ 𝐺 ) |
5 |
|
gsumzsplit.g |
⊢ ( 𝜑 → 𝐺 ∈ Mnd ) |
6 |
|
gsumzsplit.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
7 |
|
gsumzsplit.f |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
8 |
|
gsumzsplit.c |
⊢ ( 𝜑 → ran 𝐹 ⊆ ( 𝑍 ‘ ran 𝐹 ) ) |
9 |
|
gsumzsplit.w |
⊢ ( 𝜑 → 𝐹 finSupp 0 ) |
10 |
|
gsumzsplit.i |
⊢ ( 𝜑 → ( 𝐶 ∩ 𝐷 ) = ∅ ) |
11 |
|
gsumzsplit.u |
⊢ ( 𝜑 → 𝐴 = ( 𝐶 ∪ 𝐷 ) ) |
12 |
2
|
fvexi |
⊢ 0 ∈ V |
13 |
12
|
a1i |
⊢ ( 𝜑 → 0 ∈ V ) |
14 |
7 6 13 9
|
fsuppmptif |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) finSupp 0 ) |
15 |
7 6 13 9
|
fsuppmptif |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) finSupp 0 ) |
16 |
1
|
submacs |
⊢ ( 𝐺 ∈ Mnd → ( SubMnd ‘ 𝐺 ) ∈ ( ACS ‘ 𝐵 ) ) |
17 |
|
acsmre |
⊢ ( ( SubMnd ‘ 𝐺 ) ∈ ( ACS ‘ 𝐵 ) → ( SubMnd ‘ 𝐺 ) ∈ ( Moore ‘ 𝐵 ) ) |
18 |
5 16 17
|
3syl |
⊢ ( 𝜑 → ( SubMnd ‘ 𝐺 ) ∈ ( Moore ‘ 𝐵 ) ) |
19 |
7
|
frnd |
⊢ ( 𝜑 → ran 𝐹 ⊆ 𝐵 ) |
20 |
|
eqid |
⊢ ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) = ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) |
21 |
20
|
mrccl |
⊢ ( ( ( SubMnd ‘ 𝐺 ) ∈ ( Moore ‘ 𝐵 ) ∧ ran 𝐹 ⊆ 𝐵 ) → ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ∈ ( SubMnd ‘ 𝐺 ) ) |
22 |
18 19 21
|
syl2anc |
⊢ ( 𝜑 → ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ∈ ( SubMnd ‘ 𝐺 ) ) |
23 |
|
eqid |
⊢ ( 𝐺 ↾s ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) = ( 𝐺 ↾s ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) |
24 |
4 20 23
|
cntzspan |
⊢ ( ( 𝐺 ∈ Mnd ∧ ran 𝐹 ⊆ ( 𝑍 ‘ ran 𝐹 ) ) → ( 𝐺 ↾s ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) ∈ CMnd ) |
25 |
5 8 24
|
syl2anc |
⊢ ( 𝜑 → ( 𝐺 ↾s ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) ∈ CMnd ) |
26 |
23 4
|
submcmn2 |
⊢ ( ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ∈ ( SubMnd ‘ 𝐺 ) → ( ( 𝐺 ↾s ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) ∈ CMnd ↔ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ⊆ ( 𝑍 ‘ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) ) ) |
27 |
22 26
|
syl |
⊢ ( 𝜑 → ( ( 𝐺 ↾s ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) ∈ CMnd ↔ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ⊆ ( 𝑍 ‘ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) ) ) |
28 |
25 27
|
mpbid |
⊢ ( 𝜑 → ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ⊆ ( 𝑍 ‘ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) ) |
29 |
18 20 19
|
mrcssidd |
⊢ ( 𝜑 → ran 𝐹 ⊆ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) |
30 |
29
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ran 𝐹 ⊆ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) |
31 |
7
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn 𝐴 ) |
32 |
|
fnfvelrn |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝑘 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑘 ) ∈ ran 𝐹 ) |
33 |
31 32
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑘 ) ∈ ran 𝐹 ) |
34 |
30 33
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑘 ) ∈ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) |
35 |
2
|
subm0cl |
⊢ ( ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ∈ ( SubMnd ‘ 𝐺 ) → 0 ∈ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) |
36 |
22 35
|
syl |
⊢ ( 𝜑 → 0 ∈ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) |
37 |
36
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 0 ∈ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) |
38 |
34 37
|
ifcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , 0 ) ∈ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) |
39 |
38
|
fmpttd |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) : 𝐴 ⟶ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) |
40 |
34 37
|
ifcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 0 ) ∈ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) |
41 |
40
|
fmpttd |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) : 𝐴 ⟶ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) |
42 |
1 2 3 4 5 6 14 15 22 28 39 41
|
gsumzadd |
⊢ ( 𝜑 → ( 𝐺 Σg ( ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ∘f + ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ) ) = ( ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ) + ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ) ) ) |
43 |
7
|
feqmptd |
⊢ ( 𝜑 → 𝐹 = ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ) |
44 |
|
iftrue |
⊢ ( 𝑘 ∈ 𝐶 → if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , 0 ) = ( 𝐹 ‘ 𝑘 ) ) |
45 |
44
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ 𝑘 ∈ 𝐶 ) → if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , 0 ) = ( 𝐹 ‘ 𝑘 ) ) |
46 |
|
noel |
⊢ ¬ 𝑘 ∈ ∅ |
47 |
|
eleq2 |
⊢ ( ( 𝐶 ∩ 𝐷 ) = ∅ → ( 𝑘 ∈ ( 𝐶 ∩ 𝐷 ) ↔ 𝑘 ∈ ∅ ) ) |
48 |
46 47
|
mtbiri |
⊢ ( ( 𝐶 ∩ 𝐷 ) = ∅ → ¬ 𝑘 ∈ ( 𝐶 ∩ 𝐷 ) ) |
49 |
10 48
|
syl |
⊢ ( 𝜑 → ¬ 𝑘 ∈ ( 𝐶 ∩ 𝐷 ) ) |
50 |
49
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ¬ 𝑘 ∈ ( 𝐶 ∩ 𝐷 ) ) |
51 |
|
elin |
⊢ ( 𝑘 ∈ ( 𝐶 ∩ 𝐷 ) ↔ ( 𝑘 ∈ 𝐶 ∧ 𝑘 ∈ 𝐷 ) ) |
52 |
50 51
|
sylnib |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ¬ ( 𝑘 ∈ 𝐶 ∧ 𝑘 ∈ 𝐷 ) ) |
53 |
|
imnan |
⊢ ( ( 𝑘 ∈ 𝐶 → ¬ 𝑘 ∈ 𝐷 ) ↔ ¬ ( 𝑘 ∈ 𝐶 ∧ 𝑘 ∈ 𝐷 ) ) |
54 |
52 53
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝑘 ∈ 𝐶 → ¬ 𝑘 ∈ 𝐷 ) ) |
55 |
54
|
imp |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ 𝑘 ∈ 𝐶 ) → ¬ 𝑘 ∈ 𝐷 ) |
56 |
55
|
iffalsed |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ 𝑘 ∈ 𝐶 ) → if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 0 ) = 0 ) |
57 |
45 56
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ 𝑘 ∈ 𝐶 ) → ( if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , 0 ) + if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) = ( ( 𝐹 ‘ 𝑘 ) + 0 ) ) |
58 |
7
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑘 ) ∈ 𝐵 ) |
59 |
1 3 2
|
mndrid |
⊢ ( ( 𝐺 ∈ Mnd ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝐵 ) → ( ( 𝐹 ‘ 𝑘 ) + 0 ) = ( 𝐹 ‘ 𝑘 ) ) |
60 |
5 58 59
|
syl2an2r |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑘 ) + 0 ) = ( 𝐹 ‘ 𝑘 ) ) |
61 |
60
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ 𝑘 ∈ 𝐶 ) → ( ( 𝐹 ‘ 𝑘 ) + 0 ) = ( 𝐹 ‘ 𝑘 ) ) |
62 |
57 61
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ 𝑘 ∈ 𝐶 ) → ( if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , 0 ) + if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) = ( 𝐹 ‘ 𝑘 ) ) |
63 |
54
|
con2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝑘 ∈ 𝐷 → ¬ 𝑘 ∈ 𝐶 ) ) |
64 |
63
|
imp |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ 𝑘 ∈ 𝐷 ) → ¬ 𝑘 ∈ 𝐶 ) |
65 |
64
|
iffalsed |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ 𝑘 ∈ 𝐷 ) → if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , 0 ) = 0 ) |
66 |
|
iftrue |
⊢ ( 𝑘 ∈ 𝐷 → if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 0 ) = ( 𝐹 ‘ 𝑘 ) ) |
67 |
66
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ 𝑘 ∈ 𝐷 ) → if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 0 ) = ( 𝐹 ‘ 𝑘 ) ) |
68 |
65 67
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ 𝑘 ∈ 𝐷 ) → ( if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , 0 ) + if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) = ( 0 + ( 𝐹 ‘ 𝑘 ) ) ) |
69 |
1 3 2
|
mndlid |
⊢ ( ( 𝐺 ∈ Mnd ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝐵 ) → ( 0 + ( 𝐹 ‘ 𝑘 ) ) = ( 𝐹 ‘ 𝑘 ) ) |
70 |
5 58 69
|
syl2an2r |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 0 + ( 𝐹 ‘ 𝑘 ) ) = ( 𝐹 ‘ 𝑘 ) ) |
71 |
70
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ 𝑘 ∈ 𝐷 ) → ( 0 + ( 𝐹 ‘ 𝑘 ) ) = ( 𝐹 ‘ 𝑘 ) ) |
72 |
68 71
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ 𝑘 ∈ 𝐷 ) → ( if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , 0 ) + if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) = ( 𝐹 ‘ 𝑘 ) ) |
73 |
11
|
eleq2d |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↔ 𝑘 ∈ ( 𝐶 ∪ 𝐷 ) ) ) |
74 |
|
elun |
⊢ ( 𝑘 ∈ ( 𝐶 ∪ 𝐷 ) ↔ ( 𝑘 ∈ 𝐶 ∨ 𝑘 ∈ 𝐷 ) ) |
75 |
73 74
|
bitrdi |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↔ ( 𝑘 ∈ 𝐶 ∨ 𝑘 ∈ 𝐷 ) ) ) |
76 |
75
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝑘 ∈ 𝐶 ∨ 𝑘 ∈ 𝐷 ) ) |
77 |
62 72 76
|
mpjaodan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , 0 ) + if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) = ( 𝐹 ‘ 𝑘 ) ) |
78 |
77
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ ( if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , 0 ) + if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ) = ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ) |
79 |
43 78
|
eqtr4d |
⊢ ( 𝜑 → 𝐹 = ( 𝑘 ∈ 𝐴 ↦ ( if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , 0 ) + if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ) ) |
80 |
1 2
|
mndidcl |
⊢ ( 𝐺 ∈ Mnd → 0 ∈ 𝐵 ) |
81 |
5 80
|
syl |
⊢ ( 𝜑 → 0 ∈ 𝐵 ) |
82 |
81
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 0 ∈ 𝐵 ) |
83 |
58 82
|
ifcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , 0 ) ∈ 𝐵 ) |
84 |
58 82
|
ifcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 0 ) ∈ 𝐵 ) |
85 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) = ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ) |
86 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) = ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ) |
87 |
6 83 84 85 86
|
offval2 |
⊢ ( 𝜑 → ( ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ∘f + ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ) = ( 𝑘 ∈ 𝐴 ↦ ( if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , 0 ) + if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ) ) |
88 |
79 87
|
eqtr4d |
⊢ ( 𝜑 → 𝐹 = ( ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ∘f + ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ) ) |
89 |
88
|
oveq2d |
⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg ( ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ∘f + ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ) ) ) |
90 |
43
|
reseq1d |
⊢ ( 𝜑 → ( 𝐹 ↾ 𝐶 ) = ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ↾ 𝐶 ) ) |
91 |
|
ssun1 |
⊢ 𝐶 ⊆ ( 𝐶 ∪ 𝐷 ) |
92 |
91 11
|
sseqtrrid |
⊢ ( 𝜑 → 𝐶 ⊆ 𝐴 ) |
93 |
44
|
mpteq2ia |
⊢ ( 𝑘 ∈ 𝐶 ↦ if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) = ( 𝑘 ∈ 𝐶 ↦ ( 𝐹 ‘ 𝑘 ) ) |
94 |
|
resmpt |
⊢ ( 𝐶 ⊆ 𝐴 → ( ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ↾ 𝐶 ) = ( 𝑘 ∈ 𝐶 ↦ if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ) |
95 |
|
resmpt |
⊢ ( 𝐶 ⊆ 𝐴 → ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ↾ 𝐶 ) = ( 𝑘 ∈ 𝐶 ↦ ( 𝐹 ‘ 𝑘 ) ) ) |
96 |
93 94 95
|
3eqtr4a |
⊢ ( 𝐶 ⊆ 𝐴 → ( ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ↾ 𝐶 ) = ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ↾ 𝐶 ) ) |
97 |
92 96
|
syl |
⊢ ( 𝜑 → ( ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ↾ 𝐶 ) = ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ↾ 𝐶 ) ) |
98 |
90 97
|
eqtr4d |
⊢ ( 𝜑 → ( 𝐹 ↾ 𝐶 ) = ( ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ↾ 𝐶 ) ) |
99 |
98
|
oveq2d |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝐹 ↾ 𝐶 ) ) = ( 𝐺 Σg ( ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ↾ 𝐶 ) ) ) |
100 |
83
|
fmpttd |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) : 𝐴 ⟶ 𝐵 ) |
101 |
39
|
frnd |
⊢ ( 𝜑 → ran ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ⊆ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) |
102 |
4
|
cntzidss |
⊢ ( ( ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ⊆ ( 𝑍 ‘ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) ∧ ran ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ⊆ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) → ran ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ⊆ ( 𝑍 ‘ ran ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ) ) |
103 |
28 101 102
|
syl2anc |
⊢ ( 𝜑 → ran ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ⊆ ( 𝑍 ‘ ran ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ) ) |
104 |
|
eldifn |
⊢ ( 𝑘 ∈ ( 𝐴 ∖ 𝐶 ) → ¬ 𝑘 ∈ 𝐶 ) |
105 |
104
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∖ 𝐶 ) ) → ¬ 𝑘 ∈ 𝐶 ) |
106 |
105
|
iffalsed |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∖ 𝐶 ) ) → if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , 0 ) = 0 ) |
107 |
106 6
|
suppss2 |
⊢ ( 𝜑 → ( ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) supp 0 ) ⊆ 𝐶 ) |
108 |
1 2 4 5 6 100 103 107 14
|
gsumzres |
⊢ ( 𝜑 → ( 𝐺 Σg ( ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ↾ 𝐶 ) ) = ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ) ) |
109 |
99 108
|
eqtrd |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝐹 ↾ 𝐶 ) ) = ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ) ) |
110 |
43
|
reseq1d |
⊢ ( 𝜑 → ( 𝐹 ↾ 𝐷 ) = ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ↾ 𝐷 ) ) |
111 |
|
ssun2 |
⊢ 𝐷 ⊆ ( 𝐶 ∪ 𝐷 ) |
112 |
111 11
|
sseqtrrid |
⊢ ( 𝜑 → 𝐷 ⊆ 𝐴 ) |
113 |
66
|
mpteq2ia |
⊢ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) = ( 𝑘 ∈ 𝐷 ↦ ( 𝐹 ‘ 𝑘 ) ) |
114 |
|
resmpt |
⊢ ( 𝐷 ⊆ 𝐴 → ( ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ↾ 𝐷 ) = ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ) |
115 |
|
resmpt |
⊢ ( 𝐷 ⊆ 𝐴 → ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ↾ 𝐷 ) = ( 𝑘 ∈ 𝐷 ↦ ( 𝐹 ‘ 𝑘 ) ) ) |
116 |
113 114 115
|
3eqtr4a |
⊢ ( 𝐷 ⊆ 𝐴 → ( ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ↾ 𝐷 ) = ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ↾ 𝐷 ) ) |
117 |
112 116
|
syl |
⊢ ( 𝜑 → ( ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ↾ 𝐷 ) = ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ↾ 𝐷 ) ) |
118 |
110 117
|
eqtr4d |
⊢ ( 𝜑 → ( 𝐹 ↾ 𝐷 ) = ( ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ↾ 𝐷 ) ) |
119 |
118
|
oveq2d |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝐹 ↾ 𝐷 ) ) = ( 𝐺 Σg ( ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ↾ 𝐷 ) ) ) |
120 |
84
|
fmpttd |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) : 𝐴 ⟶ 𝐵 ) |
121 |
41
|
frnd |
⊢ ( 𝜑 → ran ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ⊆ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) |
122 |
4
|
cntzidss |
⊢ ( ( ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ⊆ ( 𝑍 ‘ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) ∧ ran ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ⊆ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) → ran ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ⊆ ( 𝑍 ‘ ran ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ) ) |
123 |
28 121 122
|
syl2anc |
⊢ ( 𝜑 → ran ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ⊆ ( 𝑍 ‘ ran ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ) ) |
124 |
|
eldifn |
⊢ ( 𝑘 ∈ ( 𝐴 ∖ 𝐷 ) → ¬ 𝑘 ∈ 𝐷 ) |
125 |
124
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∖ 𝐷 ) ) → ¬ 𝑘 ∈ 𝐷 ) |
126 |
125
|
iffalsed |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∖ 𝐷 ) ) → if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 0 ) = 0 ) |
127 |
126 6
|
suppss2 |
⊢ ( 𝜑 → ( ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) supp 0 ) ⊆ 𝐷 ) |
128 |
1 2 4 5 6 120 123 127 15
|
gsumzres |
⊢ ( 𝜑 → ( 𝐺 Σg ( ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ↾ 𝐷 ) ) = ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ) ) |
129 |
119 128
|
eqtrd |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝐹 ↾ 𝐷 ) ) = ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ) ) |
130 |
109 129
|
oveq12d |
⊢ ( 𝜑 → ( ( 𝐺 Σg ( 𝐹 ↾ 𝐶 ) ) + ( 𝐺 Σg ( 𝐹 ↾ 𝐷 ) ) ) = ( ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ) + ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ) ) ) |
131 |
42 89 130
|
3eqtr4d |
⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) = ( ( 𝐺 Σg ( 𝐹 ↾ 𝐶 ) ) + ( 𝐺 Σg ( 𝐹 ↾ 𝐷 ) ) ) ) |