Metamath Proof Explorer


Theorem gsumzsplit

Description: Split a group sum into two parts. (Contributed by Mario Carneiro, 25-Apr-2016) (Revised by AV, 5-Jun-2019)

Ref Expression
Hypotheses gsumzsplit.b 𝐵 = ( Base ‘ 𝐺 )
gsumzsplit.0 0 = ( 0g𝐺 )
gsumzsplit.p + = ( +g𝐺 )
gsumzsplit.z 𝑍 = ( Cntz ‘ 𝐺 )
gsumzsplit.g ( 𝜑𝐺 ∈ Mnd )
gsumzsplit.a ( 𝜑𝐴𝑉 )
gsumzsplit.f ( 𝜑𝐹 : 𝐴𝐵 )
gsumzsplit.c ( 𝜑 → ran 𝐹 ⊆ ( 𝑍 ‘ ran 𝐹 ) )
gsumzsplit.w ( 𝜑𝐹 finSupp 0 )
gsumzsplit.i ( 𝜑 → ( 𝐶𝐷 ) = ∅ )
gsumzsplit.u ( 𝜑𝐴 = ( 𝐶𝐷 ) )
Assertion gsumzsplit ( 𝜑 → ( 𝐺 Σg 𝐹 ) = ( ( 𝐺 Σg ( 𝐹𝐶 ) ) + ( 𝐺 Σg ( 𝐹𝐷 ) ) ) )

Proof

Step Hyp Ref Expression
1 gsumzsplit.b 𝐵 = ( Base ‘ 𝐺 )
2 gsumzsplit.0 0 = ( 0g𝐺 )
3 gsumzsplit.p + = ( +g𝐺 )
4 gsumzsplit.z 𝑍 = ( Cntz ‘ 𝐺 )
5 gsumzsplit.g ( 𝜑𝐺 ∈ Mnd )
6 gsumzsplit.a ( 𝜑𝐴𝑉 )
7 gsumzsplit.f ( 𝜑𝐹 : 𝐴𝐵 )
8 gsumzsplit.c ( 𝜑 → ran 𝐹 ⊆ ( 𝑍 ‘ ran 𝐹 ) )
9 gsumzsplit.w ( 𝜑𝐹 finSupp 0 )
10 gsumzsplit.i ( 𝜑 → ( 𝐶𝐷 ) = ∅ )
11 gsumzsplit.u ( 𝜑𝐴 = ( 𝐶𝐷 ) )
12 2 fvexi 0 ∈ V
13 12 a1i ( 𝜑0 ∈ V )
14 7 6 13 9 fsuppmptif ( 𝜑 → ( 𝑘𝐴 ↦ if ( 𝑘𝐶 , ( 𝐹𝑘 ) , 0 ) ) finSupp 0 )
15 7 6 13 9 fsuppmptif ( 𝜑 → ( 𝑘𝐴 ↦ if ( 𝑘𝐷 , ( 𝐹𝑘 ) , 0 ) ) finSupp 0 )
16 1 submacs ( 𝐺 ∈ Mnd → ( SubMnd ‘ 𝐺 ) ∈ ( ACS ‘ 𝐵 ) )
17 acsmre ( ( SubMnd ‘ 𝐺 ) ∈ ( ACS ‘ 𝐵 ) → ( SubMnd ‘ 𝐺 ) ∈ ( Moore ‘ 𝐵 ) )
18 5 16 17 3syl ( 𝜑 → ( SubMnd ‘ 𝐺 ) ∈ ( Moore ‘ 𝐵 ) )
19 7 frnd ( 𝜑 → ran 𝐹𝐵 )
20 eqid ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) = ( mrCls ‘ ( SubMnd ‘ 𝐺 ) )
21 20 mrccl ( ( ( SubMnd ‘ 𝐺 ) ∈ ( Moore ‘ 𝐵 ) ∧ ran 𝐹𝐵 ) → ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ∈ ( SubMnd ‘ 𝐺 ) )
22 18 19 21 syl2anc ( 𝜑 → ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ∈ ( SubMnd ‘ 𝐺 ) )
23 eqid ( 𝐺s ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) = ( 𝐺s ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) )
24 4 20 23 cntzspan ( ( 𝐺 ∈ Mnd ∧ ran 𝐹 ⊆ ( 𝑍 ‘ ran 𝐹 ) ) → ( 𝐺s ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) ∈ CMnd )
25 5 8 24 syl2anc ( 𝜑 → ( 𝐺s ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) ∈ CMnd )
26 23 4 submcmn2 ( ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ∈ ( SubMnd ‘ 𝐺 ) → ( ( 𝐺s ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) ∈ CMnd ↔ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ⊆ ( 𝑍 ‘ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) ) )
27 22 26 syl ( 𝜑 → ( ( 𝐺s ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) ∈ CMnd ↔ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ⊆ ( 𝑍 ‘ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) ) )
28 25 27 mpbid ( 𝜑 → ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ⊆ ( 𝑍 ‘ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) )
29 18 20 19 mrcssidd ( 𝜑 → ran 𝐹 ⊆ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) )
30 29 adantr ( ( 𝜑𝑘𝐴 ) → ran 𝐹 ⊆ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) )
31 7 ffnd ( 𝜑𝐹 Fn 𝐴 )
32 fnfvelrn ( ( 𝐹 Fn 𝐴𝑘𝐴 ) → ( 𝐹𝑘 ) ∈ ran 𝐹 )
33 31 32 sylan ( ( 𝜑𝑘𝐴 ) → ( 𝐹𝑘 ) ∈ ran 𝐹 )
34 30 33 sseldd ( ( 𝜑𝑘𝐴 ) → ( 𝐹𝑘 ) ∈ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) )
35 2 subm0cl ( ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ∈ ( SubMnd ‘ 𝐺 ) → 0 ∈ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) )
36 22 35 syl ( 𝜑0 ∈ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) )
37 36 adantr ( ( 𝜑𝑘𝐴 ) → 0 ∈ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) )
38 34 37 ifcld ( ( 𝜑𝑘𝐴 ) → if ( 𝑘𝐶 , ( 𝐹𝑘 ) , 0 ) ∈ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) )
39 38 fmpttd ( 𝜑 → ( 𝑘𝐴 ↦ if ( 𝑘𝐶 , ( 𝐹𝑘 ) , 0 ) ) : 𝐴 ⟶ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) )
40 34 37 ifcld ( ( 𝜑𝑘𝐴 ) → if ( 𝑘𝐷 , ( 𝐹𝑘 ) , 0 ) ∈ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) )
41 40 fmpttd ( 𝜑 → ( 𝑘𝐴 ↦ if ( 𝑘𝐷 , ( 𝐹𝑘 ) , 0 ) ) : 𝐴 ⟶ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) )
42 1 2 3 4 5 6 14 15 22 28 39 41 gsumzadd ( 𝜑 → ( 𝐺 Σg ( ( 𝑘𝐴 ↦ if ( 𝑘𝐶 , ( 𝐹𝑘 ) , 0 ) ) ∘f + ( 𝑘𝐴 ↦ if ( 𝑘𝐷 , ( 𝐹𝑘 ) , 0 ) ) ) ) = ( ( 𝐺 Σg ( 𝑘𝐴 ↦ if ( 𝑘𝐶 , ( 𝐹𝑘 ) , 0 ) ) ) + ( 𝐺 Σg ( 𝑘𝐴 ↦ if ( 𝑘𝐷 , ( 𝐹𝑘 ) , 0 ) ) ) ) )
43 7 feqmptd ( 𝜑𝐹 = ( 𝑘𝐴 ↦ ( 𝐹𝑘 ) ) )
44 iftrue ( 𝑘𝐶 → if ( 𝑘𝐶 , ( 𝐹𝑘 ) , 0 ) = ( 𝐹𝑘 ) )
45 44 adantl ( ( ( 𝜑𝑘𝐴 ) ∧ 𝑘𝐶 ) → if ( 𝑘𝐶 , ( 𝐹𝑘 ) , 0 ) = ( 𝐹𝑘 ) )
46 noel ¬ 𝑘 ∈ ∅
47 eleq2 ( ( 𝐶𝐷 ) = ∅ → ( 𝑘 ∈ ( 𝐶𝐷 ) ↔ 𝑘 ∈ ∅ ) )
48 46 47 mtbiri ( ( 𝐶𝐷 ) = ∅ → ¬ 𝑘 ∈ ( 𝐶𝐷 ) )
49 10 48 syl ( 𝜑 → ¬ 𝑘 ∈ ( 𝐶𝐷 ) )
50 49 adantr ( ( 𝜑𝑘𝐴 ) → ¬ 𝑘 ∈ ( 𝐶𝐷 ) )
51 elin ( 𝑘 ∈ ( 𝐶𝐷 ) ↔ ( 𝑘𝐶𝑘𝐷 ) )
52 50 51 sylnib ( ( 𝜑𝑘𝐴 ) → ¬ ( 𝑘𝐶𝑘𝐷 ) )
53 imnan ( ( 𝑘𝐶 → ¬ 𝑘𝐷 ) ↔ ¬ ( 𝑘𝐶𝑘𝐷 ) )
54 52 53 sylibr ( ( 𝜑𝑘𝐴 ) → ( 𝑘𝐶 → ¬ 𝑘𝐷 ) )
55 54 imp ( ( ( 𝜑𝑘𝐴 ) ∧ 𝑘𝐶 ) → ¬ 𝑘𝐷 )
56 55 iffalsed ( ( ( 𝜑𝑘𝐴 ) ∧ 𝑘𝐶 ) → if ( 𝑘𝐷 , ( 𝐹𝑘 ) , 0 ) = 0 )
57 45 56 oveq12d ( ( ( 𝜑𝑘𝐴 ) ∧ 𝑘𝐶 ) → ( if ( 𝑘𝐶 , ( 𝐹𝑘 ) , 0 ) + if ( 𝑘𝐷 , ( 𝐹𝑘 ) , 0 ) ) = ( ( 𝐹𝑘 ) + 0 ) )
58 7 ffvelrnda ( ( 𝜑𝑘𝐴 ) → ( 𝐹𝑘 ) ∈ 𝐵 )
59 1 3 2 mndrid ( ( 𝐺 ∈ Mnd ∧ ( 𝐹𝑘 ) ∈ 𝐵 ) → ( ( 𝐹𝑘 ) + 0 ) = ( 𝐹𝑘 ) )
60 5 58 59 syl2an2r ( ( 𝜑𝑘𝐴 ) → ( ( 𝐹𝑘 ) + 0 ) = ( 𝐹𝑘 ) )
61 60 adantr ( ( ( 𝜑𝑘𝐴 ) ∧ 𝑘𝐶 ) → ( ( 𝐹𝑘 ) + 0 ) = ( 𝐹𝑘 ) )
62 57 61 eqtrd ( ( ( 𝜑𝑘𝐴 ) ∧ 𝑘𝐶 ) → ( if ( 𝑘𝐶 , ( 𝐹𝑘 ) , 0 ) + if ( 𝑘𝐷 , ( 𝐹𝑘 ) , 0 ) ) = ( 𝐹𝑘 ) )
63 54 con2d ( ( 𝜑𝑘𝐴 ) → ( 𝑘𝐷 → ¬ 𝑘𝐶 ) )
64 63 imp ( ( ( 𝜑𝑘𝐴 ) ∧ 𝑘𝐷 ) → ¬ 𝑘𝐶 )
65 64 iffalsed ( ( ( 𝜑𝑘𝐴 ) ∧ 𝑘𝐷 ) → if ( 𝑘𝐶 , ( 𝐹𝑘 ) , 0 ) = 0 )
66 iftrue ( 𝑘𝐷 → if ( 𝑘𝐷 , ( 𝐹𝑘 ) , 0 ) = ( 𝐹𝑘 ) )
67 66 adantl ( ( ( 𝜑𝑘𝐴 ) ∧ 𝑘𝐷 ) → if ( 𝑘𝐷 , ( 𝐹𝑘 ) , 0 ) = ( 𝐹𝑘 ) )
68 65 67 oveq12d ( ( ( 𝜑𝑘𝐴 ) ∧ 𝑘𝐷 ) → ( if ( 𝑘𝐶 , ( 𝐹𝑘 ) , 0 ) + if ( 𝑘𝐷 , ( 𝐹𝑘 ) , 0 ) ) = ( 0 + ( 𝐹𝑘 ) ) )
69 1 3 2 mndlid ( ( 𝐺 ∈ Mnd ∧ ( 𝐹𝑘 ) ∈ 𝐵 ) → ( 0 + ( 𝐹𝑘 ) ) = ( 𝐹𝑘 ) )
70 5 58 69 syl2an2r ( ( 𝜑𝑘𝐴 ) → ( 0 + ( 𝐹𝑘 ) ) = ( 𝐹𝑘 ) )
71 70 adantr ( ( ( 𝜑𝑘𝐴 ) ∧ 𝑘𝐷 ) → ( 0 + ( 𝐹𝑘 ) ) = ( 𝐹𝑘 ) )
72 68 71 eqtrd ( ( ( 𝜑𝑘𝐴 ) ∧ 𝑘𝐷 ) → ( if ( 𝑘𝐶 , ( 𝐹𝑘 ) , 0 ) + if ( 𝑘𝐷 , ( 𝐹𝑘 ) , 0 ) ) = ( 𝐹𝑘 ) )
73 11 eleq2d ( 𝜑 → ( 𝑘𝐴𝑘 ∈ ( 𝐶𝐷 ) ) )
74 elun ( 𝑘 ∈ ( 𝐶𝐷 ) ↔ ( 𝑘𝐶𝑘𝐷 ) )
75 73 74 bitrdi ( 𝜑 → ( 𝑘𝐴 ↔ ( 𝑘𝐶𝑘𝐷 ) ) )
76 75 biimpa ( ( 𝜑𝑘𝐴 ) → ( 𝑘𝐶𝑘𝐷 ) )
77 62 72 76 mpjaodan ( ( 𝜑𝑘𝐴 ) → ( if ( 𝑘𝐶 , ( 𝐹𝑘 ) , 0 ) + if ( 𝑘𝐷 , ( 𝐹𝑘 ) , 0 ) ) = ( 𝐹𝑘 ) )
78 77 mpteq2dva ( 𝜑 → ( 𝑘𝐴 ↦ ( if ( 𝑘𝐶 , ( 𝐹𝑘 ) , 0 ) + if ( 𝑘𝐷 , ( 𝐹𝑘 ) , 0 ) ) ) = ( 𝑘𝐴 ↦ ( 𝐹𝑘 ) ) )
79 43 78 eqtr4d ( 𝜑𝐹 = ( 𝑘𝐴 ↦ ( if ( 𝑘𝐶 , ( 𝐹𝑘 ) , 0 ) + if ( 𝑘𝐷 , ( 𝐹𝑘 ) , 0 ) ) ) )
80 1 2 mndidcl ( 𝐺 ∈ Mnd → 0𝐵 )
81 5 80 syl ( 𝜑0𝐵 )
82 81 adantr ( ( 𝜑𝑘𝐴 ) → 0𝐵 )
83 58 82 ifcld ( ( 𝜑𝑘𝐴 ) → if ( 𝑘𝐶 , ( 𝐹𝑘 ) , 0 ) ∈ 𝐵 )
84 58 82 ifcld ( ( 𝜑𝑘𝐴 ) → if ( 𝑘𝐷 , ( 𝐹𝑘 ) , 0 ) ∈ 𝐵 )
85 eqidd ( 𝜑 → ( 𝑘𝐴 ↦ if ( 𝑘𝐶 , ( 𝐹𝑘 ) , 0 ) ) = ( 𝑘𝐴 ↦ if ( 𝑘𝐶 , ( 𝐹𝑘 ) , 0 ) ) )
86 eqidd ( 𝜑 → ( 𝑘𝐴 ↦ if ( 𝑘𝐷 , ( 𝐹𝑘 ) , 0 ) ) = ( 𝑘𝐴 ↦ if ( 𝑘𝐷 , ( 𝐹𝑘 ) , 0 ) ) )
87 6 83 84 85 86 offval2 ( 𝜑 → ( ( 𝑘𝐴 ↦ if ( 𝑘𝐶 , ( 𝐹𝑘 ) , 0 ) ) ∘f + ( 𝑘𝐴 ↦ if ( 𝑘𝐷 , ( 𝐹𝑘 ) , 0 ) ) ) = ( 𝑘𝐴 ↦ ( if ( 𝑘𝐶 , ( 𝐹𝑘 ) , 0 ) + if ( 𝑘𝐷 , ( 𝐹𝑘 ) , 0 ) ) ) )
88 79 87 eqtr4d ( 𝜑𝐹 = ( ( 𝑘𝐴 ↦ if ( 𝑘𝐶 , ( 𝐹𝑘 ) , 0 ) ) ∘f + ( 𝑘𝐴 ↦ if ( 𝑘𝐷 , ( 𝐹𝑘 ) , 0 ) ) ) )
89 88 oveq2d ( 𝜑 → ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg ( ( 𝑘𝐴 ↦ if ( 𝑘𝐶 , ( 𝐹𝑘 ) , 0 ) ) ∘f + ( 𝑘𝐴 ↦ if ( 𝑘𝐷 , ( 𝐹𝑘 ) , 0 ) ) ) ) )
90 43 reseq1d ( 𝜑 → ( 𝐹𝐶 ) = ( ( 𝑘𝐴 ↦ ( 𝐹𝑘 ) ) ↾ 𝐶 ) )
91 ssun1 𝐶 ⊆ ( 𝐶𝐷 )
92 91 11 sseqtrrid ( 𝜑𝐶𝐴 )
93 44 mpteq2ia ( 𝑘𝐶 ↦ if ( 𝑘𝐶 , ( 𝐹𝑘 ) , 0 ) ) = ( 𝑘𝐶 ↦ ( 𝐹𝑘 ) )
94 resmpt ( 𝐶𝐴 → ( ( 𝑘𝐴 ↦ if ( 𝑘𝐶 , ( 𝐹𝑘 ) , 0 ) ) ↾ 𝐶 ) = ( 𝑘𝐶 ↦ if ( 𝑘𝐶 , ( 𝐹𝑘 ) , 0 ) ) )
95 resmpt ( 𝐶𝐴 → ( ( 𝑘𝐴 ↦ ( 𝐹𝑘 ) ) ↾ 𝐶 ) = ( 𝑘𝐶 ↦ ( 𝐹𝑘 ) ) )
96 93 94 95 3eqtr4a ( 𝐶𝐴 → ( ( 𝑘𝐴 ↦ if ( 𝑘𝐶 , ( 𝐹𝑘 ) , 0 ) ) ↾ 𝐶 ) = ( ( 𝑘𝐴 ↦ ( 𝐹𝑘 ) ) ↾ 𝐶 ) )
97 92 96 syl ( 𝜑 → ( ( 𝑘𝐴 ↦ if ( 𝑘𝐶 , ( 𝐹𝑘 ) , 0 ) ) ↾ 𝐶 ) = ( ( 𝑘𝐴 ↦ ( 𝐹𝑘 ) ) ↾ 𝐶 ) )
98 90 97 eqtr4d ( 𝜑 → ( 𝐹𝐶 ) = ( ( 𝑘𝐴 ↦ if ( 𝑘𝐶 , ( 𝐹𝑘 ) , 0 ) ) ↾ 𝐶 ) )
99 98 oveq2d ( 𝜑 → ( 𝐺 Σg ( 𝐹𝐶 ) ) = ( 𝐺 Σg ( ( 𝑘𝐴 ↦ if ( 𝑘𝐶 , ( 𝐹𝑘 ) , 0 ) ) ↾ 𝐶 ) ) )
100 83 fmpttd ( 𝜑 → ( 𝑘𝐴 ↦ if ( 𝑘𝐶 , ( 𝐹𝑘 ) , 0 ) ) : 𝐴𝐵 )
101 39 frnd ( 𝜑 → ran ( 𝑘𝐴 ↦ if ( 𝑘𝐶 , ( 𝐹𝑘 ) , 0 ) ) ⊆ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) )
102 4 cntzidss ( ( ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ⊆ ( 𝑍 ‘ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) ∧ ran ( 𝑘𝐴 ↦ if ( 𝑘𝐶 , ( 𝐹𝑘 ) , 0 ) ) ⊆ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) → ran ( 𝑘𝐴 ↦ if ( 𝑘𝐶 , ( 𝐹𝑘 ) , 0 ) ) ⊆ ( 𝑍 ‘ ran ( 𝑘𝐴 ↦ if ( 𝑘𝐶 , ( 𝐹𝑘 ) , 0 ) ) ) )
103 28 101 102 syl2anc ( 𝜑 → ran ( 𝑘𝐴 ↦ if ( 𝑘𝐶 , ( 𝐹𝑘 ) , 0 ) ) ⊆ ( 𝑍 ‘ ran ( 𝑘𝐴 ↦ if ( 𝑘𝐶 , ( 𝐹𝑘 ) , 0 ) ) ) )
104 eldifn ( 𝑘 ∈ ( 𝐴𝐶 ) → ¬ 𝑘𝐶 )
105 104 adantl ( ( 𝜑𝑘 ∈ ( 𝐴𝐶 ) ) → ¬ 𝑘𝐶 )
106 105 iffalsed ( ( 𝜑𝑘 ∈ ( 𝐴𝐶 ) ) → if ( 𝑘𝐶 , ( 𝐹𝑘 ) , 0 ) = 0 )
107 106 6 suppss2 ( 𝜑 → ( ( 𝑘𝐴 ↦ if ( 𝑘𝐶 , ( 𝐹𝑘 ) , 0 ) ) supp 0 ) ⊆ 𝐶 )
108 1 2 4 5 6 100 103 107 14 gsumzres ( 𝜑 → ( 𝐺 Σg ( ( 𝑘𝐴 ↦ if ( 𝑘𝐶 , ( 𝐹𝑘 ) , 0 ) ) ↾ 𝐶 ) ) = ( 𝐺 Σg ( 𝑘𝐴 ↦ if ( 𝑘𝐶 , ( 𝐹𝑘 ) , 0 ) ) ) )
109 99 108 eqtrd ( 𝜑 → ( 𝐺 Σg ( 𝐹𝐶 ) ) = ( 𝐺 Σg ( 𝑘𝐴 ↦ if ( 𝑘𝐶 , ( 𝐹𝑘 ) , 0 ) ) ) )
110 43 reseq1d ( 𝜑 → ( 𝐹𝐷 ) = ( ( 𝑘𝐴 ↦ ( 𝐹𝑘 ) ) ↾ 𝐷 ) )
111 ssun2 𝐷 ⊆ ( 𝐶𝐷 )
112 111 11 sseqtrrid ( 𝜑𝐷𝐴 )
113 66 mpteq2ia ( 𝑘𝐷 ↦ if ( 𝑘𝐷 , ( 𝐹𝑘 ) , 0 ) ) = ( 𝑘𝐷 ↦ ( 𝐹𝑘 ) )
114 resmpt ( 𝐷𝐴 → ( ( 𝑘𝐴 ↦ if ( 𝑘𝐷 , ( 𝐹𝑘 ) , 0 ) ) ↾ 𝐷 ) = ( 𝑘𝐷 ↦ if ( 𝑘𝐷 , ( 𝐹𝑘 ) , 0 ) ) )
115 resmpt ( 𝐷𝐴 → ( ( 𝑘𝐴 ↦ ( 𝐹𝑘 ) ) ↾ 𝐷 ) = ( 𝑘𝐷 ↦ ( 𝐹𝑘 ) ) )
116 113 114 115 3eqtr4a ( 𝐷𝐴 → ( ( 𝑘𝐴 ↦ if ( 𝑘𝐷 , ( 𝐹𝑘 ) , 0 ) ) ↾ 𝐷 ) = ( ( 𝑘𝐴 ↦ ( 𝐹𝑘 ) ) ↾ 𝐷 ) )
117 112 116 syl ( 𝜑 → ( ( 𝑘𝐴 ↦ if ( 𝑘𝐷 , ( 𝐹𝑘 ) , 0 ) ) ↾ 𝐷 ) = ( ( 𝑘𝐴 ↦ ( 𝐹𝑘 ) ) ↾ 𝐷 ) )
118 110 117 eqtr4d ( 𝜑 → ( 𝐹𝐷 ) = ( ( 𝑘𝐴 ↦ if ( 𝑘𝐷 , ( 𝐹𝑘 ) , 0 ) ) ↾ 𝐷 ) )
119 118 oveq2d ( 𝜑 → ( 𝐺 Σg ( 𝐹𝐷 ) ) = ( 𝐺 Σg ( ( 𝑘𝐴 ↦ if ( 𝑘𝐷 , ( 𝐹𝑘 ) , 0 ) ) ↾ 𝐷 ) ) )
120 84 fmpttd ( 𝜑 → ( 𝑘𝐴 ↦ if ( 𝑘𝐷 , ( 𝐹𝑘 ) , 0 ) ) : 𝐴𝐵 )
121 41 frnd ( 𝜑 → ran ( 𝑘𝐴 ↦ if ( 𝑘𝐷 , ( 𝐹𝑘 ) , 0 ) ) ⊆ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) )
122 4 cntzidss ( ( ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ⊆ ( 𝑍 ‘ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) ∧ ran ( 𝑘𝐴 ↦ if ( 𝑘𝐷 , ( 𝐹𝑘 ) , 0 ) ) ⊆ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) → ran ( 𝑘𝐴 ↦ if ( 𝑘𝐷 , ( 𝐹𝑘 ) , 0 ) ) ⊆ ( 𝑍 ‘ ran ( 𝑘𝐴 ↦ if ( 𝑘𝐷 , ( 𝐹𝑘 ) , 0 ) ) ) )
123 28 121 122 syl2anc ( 𝜑 → ran ( 𝑘𝐴 ↦ if ( 𝑘𝐷 , ( 𝐹𝑘 ) , 0 ) ) ⊆ ( 𝑍 ‘ ran ( 𝑘𝐴 ↦ if ( 𝑘𝐷 , ( 𝐹𝑘 ) , 0 ) ) ) )
124 eldifn ( 𝑘 ∈ ( 𝐴𝐷 ) → ¬ 𝑘𝐷 )
125 124 adantl ( ( 𝜑𝑘 ∈ ( 𝐴𝐷 ) ) → ¬ 𝑘𝐷 )
126 125 iffalsed ( ( 𝜑𝑘 ∈ ( 𝐴𝐷 ) ) → if ( 𝑘𝐷 , ( 𝐹𝑘 ) , 0 ) = 0 )
127 126 6 suppss2 ( 𝜑 → ( ( 𝑘𝐴 ↦ if ( 𝑘𝐷 , ( 𝐹𝑘 ) , 0 ) ) supp 0 ) ⊆ 𝐷 )
128 1 2 4 5 6 120 123 127 15 gsumzres ( 𝜑 → ( 𝐺 Σg ( ( 𝑘𝐴 ↦ if ( 𝑘𝐷 , ( 𝐹𝑘 ) , 0 ) ) ↾ 𝐷 ) ) = ( 𝐺 Σg ( 𝑘𝐴 ↦ if ( 𝑘𝐷 , ( 𝐹𝑘 ) , 0 ) ) ) )
129 119 128 eqtrd ( 𝜑 → ( 𝐺 Σg ( 𝐹𝐷 ) ) = ( 𝐺 Σg ( 𝑘𝐴 ↦ if ( 𝑘𝐷 , ( 𝐹𝑘 ) , 0 ) ) ) )
130 109 129 oveq12d ( 𝜑 → ( ( 𝐺 Σg ( 𝐹𝐶 ) ) + ( 𝐺 Σg ( 𝐹𝐷 ) ) ) = ( ( 𝐺 Σg ( 𝑘𝐴 ↦ if ( 𝑘𝐶 , ( 𝐹𝑘 ) , 0 ) ) ) + ( 𝐺 Σg ( 𝑘𝐴 ↦ if ( 𝑘𝐷 , ( 𝐹𝑘 ) , 0 ) ) ) ) )
131 42 89 130 3eqtr4d ( 𝜑 → ( 𝐺 Σg 𝐹 ) = ( ( 𝐺 Σg ( 𝐹𝐶 ) ) + ( 𝐺 Σg ( 𝐹𝐷 ) ) ) )