| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsumzsplit.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 2 |
|
gsumzsplit.0 |
⊢ 0 = ( 0g ‘ 𝐺 ) |
| 3 |
|
gsumzsplit.p |
⊢ + = ( +g ‘ 𝐺 ) |
| 4 |
|
gsumzsplit.z |
⊢ 𝑍 = ( Cntz ‘ 𝐺 ) |
| 5 |
|
gsumzsplit.g |
⊢ ( 𝜑 → 𝐺 ∈ Mnd ) |
| 6 |
|
gsumzsplit.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
| 7 |
|
gsumzsplit.f |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 8 |
|
gsumzsplit.c |
⊢ ( 𝜑 → ran 𝐹 ⊆ ( 𝑍 ‘ ran 𝐹 ) ) |
| 9 |
|
gsumzsplit.w |
⊢ ( 𝜑 → 𝐹 finSupp 0 ) |
| 10 |
|
gsumzsplit.i |
⊢ ( 𝜑 → ( 𝐶 ∩ 𝐷 ) = ∅ ) |
| 11 |
|
gsumzsplit.u |
⊢ ( 𝜑 → 𝐴 = ( 𝐶 ∪ 𝐷 ) ) |
| 12 |
2
|
fvexi |
⊢ 0 ∈ V |
| 13 |
12
|
a1i |
⊢ ( 𝜑 → 0 ∈ V ) |
| 14 |
7 6 13 9
|
fsuppmptif |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) finSupp 0 ) |
| 15 |
7 6 13 9
|
fsuppmptif |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) finSupp 0 ) |
| 16 |
1
|
submacs |
⊢ ( 𝐺 ∈ Mnd → ( SubMnd ‘ 𝐺 ) ∈ ( ACS ‘ 𝐵 ) ) |
| 17 |
|
acsmre |
⊢ ( ( SubMnd ‘ 𝐺 ) ∈ ( ACS ‘ 𝐵 ) → ( SubMnd ‘ 𝐺 ) ∈ ( Moore ‘ 𝐵 ) ) |
| 18 |
5 16 17
|
3syl |
⊢ ( 𝜑 → ( SubMnd ‘ 𝐺 ) ∈ ( Moore ‘ 𝐵 ) ) |
| 19 |
7
|
frnd |
⊢ ( 𝜑 → ran 𝐹 ⊆ 𝐵 ) |
| 20 |
|
eqid |
⊢ ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) = ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) |
| 21 |
20
|
mrccl |
⊢ ( ( ( SubMnd ‘ 𝐺 ) ∈ ( Moore ‘ 𝐵 ) ∧ ran 𝐹 ⊆ 𝐵 ) → ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ∈ ( SubMnd ‘ 𝐺 ) ) |
| 22 |
18 19 21
|
syl2anc |
⊢ ( 𝜑 → ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ∈ ( SubMnd ‘ 𝐺 ) ) |
| 23 |
|
eqid |
⊢ ( 𝐺 ↾s ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) = ( 𝐺 ↾s ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) |
| 24 |
4 20 23
|
cntzspan |
⊢ ( ( 𝐺 ∈ Mnd ∧ ran 𝐹 ⊆ ( 𝑍 ‘ ran 𝐹 ) ) → ( 𝐺 ↾s ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) ∈ CMnd ) |
| 25 |
5 8 24
|
syl2anc |
⊢ ( 𝜑 → ( 𝐺 ↾s ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) ∈ CMnd ) |
| 26 |
23 4
|
submcmn2 |
⊢ ( ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ∈ ( SubMnd ‘ 𝐺 ) → ( ( 𝐺 ↾s ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) ∈ CMnd ↔ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ⊆ ( 𝑍 ‘ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) ) ) |
| 27 |
22 26
|
syl |
⊢ ( 𝜑 → ( ( 𝐺 ↾s ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) ∈ CMnd ↔ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ⊆ ( 𝑍 ‘ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) ) ) |
| 28 |
25 27
|
mpbid |
⊢ ( 𝜑 → ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ⊆ ( 𝑍 ‘ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) ) |
| 29 |
18 20 19
|
mrcssidd |
⊢ ( 𝜑 → ran 𝐹 ⊆ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) |
| 30 |
29
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ran 𝐹 ⊆ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) |
| 31 |
7
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn 𝐴 ) |
| 32 |
|
fnfvelrn |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝑘 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑘 ) ∈ ran 𝐹 ) |
| 33 |
31 32
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑘 ) ∈ ran 𝐹 ) |
| 34 |
30 33
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑘 ) ∈ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) |
| 35 |
2
|
subm0cl |
⊢ ( ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ∈ ( SubMnd ‘ 𝐺 ) → 0 ∈ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) |
| 36 |
22 35
|
syl |
⊢ ( 𝜑 → 0 ∈ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) |
| 37 |
36
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 0 ∈ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) |
| 38 |
34 37
|
ifcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , 0 ) ∈ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) |
| 39 |
38
|
fmpttd |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) : 𝐴 ⟶ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) |
| 40 |
34 37
|
ifcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 0 ) ∈ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) |
| 41 |
40
|
fmpttd |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) : 𝐴 ⟶ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) |
| 42 |
1 2 3 4 5 6 14 15 22 28 39 41
|
gsumzadd |
⊢ ( 𝜑 → ( 𝐺 Σg ( ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ∘f + ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ) ) = ( ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ) + ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ) ) ) |
| 43 |
7
|
feqmptd |
⊢ ( 𝜑 → 𝐹 = ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ) |
| 44 |
|
iftrue |
⊢ ( 𝑘 ∈ 𝐶 → if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , 0 ) = ( 𝐹 ‘ 𝑘 ) ) |
| 45 |
44
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ 𝑘 ∈ 𝐶 ) → if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , 0 ) = ( 𝐹 ‘ 𝑘 ) ) |
| 46 |
|
noel |
⊢ ¬ 𝑘 ∈ ∅ |
| 47 |
|
eleq2 |
⊢ ( ( 𝐶 ∩ 𝐷 ) = ∅ → ( 𝑘 ∈ ( 𝐶 ∩ 𝐷 ) ↔ 𝑘 ∈ ∅ ) ) |
| 48 |
46 47
|
mtbiri |
⊢ ( ( 𝐶 ∩ 𝐷 ) = ∅ → ¬ 𝑘 ∈ ( 𝐶 ∩ 𝐷 ) ) |
| 49 |
10 48
|
syl |
⊢ ( 𝜑 → ¬ 𝑘 ∈ ( 𝐶 ∩ 𝐷 ) ) |
| 50 |
49
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ¬ 𝑘 ∈ ( 𝐶 ∩ 𝐷 ) ) |
| 51 |
|
elin |
⊢ ( 𝑘 ∈ ( 𝐶 ∩ 𝐷 ) ↔ ( 𝑘 ∈ 𝐶 ∧ 𝑘 ∈ 𝐷 ) ) |
| 52 |
50 51
|
sylnib |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ¬ ( 𝑘 ∈ 𝐶 ∧ 𝑘 ∈ 𝐷 ) ) |
| 53 |
|
imnan |
⊢ ( ( 𝑘 ∈ 𝐶 → ¬ 𝑘 ∈ 𝐷 ) ↔ ¬ ( 𝑘 ∈ 𝐶 ∧ 𝑘 ∈ 𝐷 ) ) |
| 54 |
52 53
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝑘 ∈ 𝐶 → ¬ 𝑘 ∈ 𝐷 ) ) |
| 55 |
54
|
imp |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ 𝑘 ∈ 𝐶 ) → ¬ 𝑘 ∈ 𝐷 ) |
| 56 |
55
|
iffalsed |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ 𝑘 ∈ 𝐶 ) → if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 0 ) = 0 ) |
| 57 |
45 56
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ 𝑘 ∈ 𝐶 ) → ( if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , 0 ) + if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) = ( ( 𝐹 ‘ 𝑘 ) + 0 ) ) |
| 58 |
7
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑘 ) ∈ 𝐵 ) |
| 59 |
1 3 2
|
mndrid |
⊢ ( ( 𝐺 ∈ Mnd ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝐵 ) → ( ( 𝐹 ‘ 𝑘 ) + 0 ) = ( 𝐹 ‘ 𝑘 ) ) |
| 60 |
5 58 59
|
syl2an2r |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑘 ) + 0 ) = ( 𝐹 ‘ 𝑘 ) ) |
| 61 |
60
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ 𝑘 ∈ 𝐶 ) → ( ( 𝐹 ‘ 𝑘 ) + 0 ) = ( 𝐹 ‘ 𝑘 ) ) |
| 62 |
57 61
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ 𝑘 ∈ 𝐶 ) → ( if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , 0 ) + if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) = ( 𝐹 ‘ 𝑘 ) ) |
| 63 |
54
|
con2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝑘 ∈ 𝐷 → ¬ 𝑘 ∈ 𝐶 ) ) |
| 64 |
63
|
imp |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ 𝑘 ∈ 𝐷 ) → ¬ 𝑘 ∈ 𝐶 ) |
| 65 |
64
|
iffalsed |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ 𝑘 ∈ 𝐷 ) → if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , 0 ) = 0 ) |
| 66 |
|
iftrue |
⊢ ( 𝑘 ∈ 𝐷 → if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 0 ) = ( 𝐹 ‘ 𝑘 ) ) |
| 67 |
66
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ 𝑘 ∈ 𝐷 ) → if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 0 ) = ( 𝐹 ‘ 𝑘 ) ) |
| 68 |
65 67
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ 𝑘 ∈ 𝐷 ) → ( if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , 0 ) + if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) = ( 0 + ( 𝐹 ‘ 𝑘 ) ) ) |
| 69 |
1 3 2
|
mndlid |
⊢ ( ( 𝐺 ∈ Mnd ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝐵 ) → ( 0 + ( 𝐹 ‘ 𝑘 ) ) = ( 𝐹 ‘ 𝑘 ) ) |
| 70 |
5 58 69
|
syl2an2r |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 0 + ( 𝐹 ‘ 𝑘 ) ) = ( 𝐹 ‘ 𝑘 ) ) |
| 71 |
70
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ 𝑘 ∈ 𝐷 ) → ( 0 + ( 𝐹 ‘ 𝑘 ) ) = ( 𝐹 ‘ 𝑘 ) ) |
| 72 |
68 71
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ 𝑘 ∈ 𝐷 ) → ( if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , 0 ) + if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) = ( 𝐹 ‘ 𝑘 ) ) |
| 73 |
11
|
eleq2d |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↔ 𝑘 ∈ ( 𝐶 ∪ 𝐷 ) ) ) |
| 74 |
|
elun |
⊢ ( 𝑘 ∈ ( 𝐶 ∪ 𝐷 ) ↔ ( 𝑘 ∈ 𝐶 ∨ 𝑘 ∈ 𝐷 ) ) |
| 75 |
73 74
|
bitrdi |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↔ ( 𝑘 ∈ 𝐶 ∨ 𝑘 ∈ 𝐷 ) ) ) |
| 76 |
75
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝑘 ∈ 𝐶 ∨ 𝑘 ∈ 𝐷 ) ) |
| 77 |
62 72 76
|
mpjaodan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , 0 ) + if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) = ( 𝐹 ‘ 𝑘 ) ) |
| 78 |
77
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ ( if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , 0 ) + if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ) = ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ) |
| 79 |
43 78
|
eqtr4d |
⊢ ( 𝜑 → 𝐹 = ( 𝑘 ∈ 𝐴 ↦ ( if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , 0 ) + if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ) ) |
| 80 |
1 2
|
mndidcl |
⊢ ( 𝐺 ∈ Mnd → 0 ∈ 𝐵 ) |
| 81 |
5 80
|
syl |
⊢ ( 𝜑 → 0 ∈ 𝐵 ) |
| 82 |
81
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 0 ∈ 𝐵 ) |
| 83 |
58 82
|
ifcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , 0 ) ∈ 𝐵 ) |
| 84 |
58 82
|
ifcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 0 ) ∈ 𝐵 ) |
| 85 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) = ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ) |
| 86 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) = ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ) |
| 87 |
6 83 84 85 86
|
offval2 |
⊢ ( 𝜑 → ( ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ∘f + ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ) = ( 𝑘 ∈ 𝐴 ↦ ( if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , 0 ) + if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ) ) |
| 88 |
79 87
|
eqtr4d |
⊢ ( 𝜑 → 𝐹 = ( ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ∘f + ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ) ) |
| 89 |
88
|
oveq2d |
⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg ( ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ∘f + ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ) ) ) |
| 90 |
43
|
reseq1d |
⊢ ( 𝜑 → ( 𝐹 ↾ 𝐶 ) = ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ↾ 𝐶 ) ) |
| 91 |
|
ssun1 |
⊢ 𝐶 ⊆ ( 𝐶 ∪ 𝐷 ) |
| 92 |
91 11
|
sseqtrrid |
⊢ ( 𝜑 → 𝐶 ⊆ 𝐴 ) |
| 93 |
44
|
mpteq2ia |
⊢ ( 𝑘 ∈ 𝐶 ↦ if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) = ( 𝑘 ∈ 𝐶 ↦ ( 𝐹 ‘ 𝑘 ) ) |
| 94 |
|
resmpt |
⊢ ( 𝐶 ⊆ 𝐴 → ( ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ↾ 𝐶 ) = ( 𝑘 ∈ 𝐶 ↦ if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ) |
| 95 |
|
resmpt |
⊢ ( 𝐶 ⊆ 𝐴 → ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ↾ 𝐶 ) = ( 𝑘 ∈ 𝐶 ↦ ( 𝐹 ‘ 𝑘 ) ) ) |
| 96 |
93 94 95
|
3eqtr4a |
⊢ ( 𝐶 ⊆ 𝐴 → ( ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ↾ 𝐶 ) = ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ↾ 𝐶 ) ) |
| 97 |
92 96
|
syl |
⊢ ( 𝜑 → ( ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ↾ 𝐶 ) = ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ↾ 𝐶 ) ) |
| 98 |
90 97
|
eqtr4d |
⊢ ( 𝜑 → ( 𝐹 ↾ 𝐶 ) = ( ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ↾ 𝐶 ) ) |
| 99 |
98
|
oveq2d |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝐹 ↾ 𝐶 ) ) = ( 𝐺 Σg ( ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ↾ 𝐶 ) ) ) |
| 100 |
83
|
fmpttd |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) : 𝐴 ⟶ 𝐵 ) |
| 101 |
39
|
frnd |
⊢ ( 𝜑 → ran ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ⊆ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) |
| 102 |
4
|
cntzidss |
⊢ ( ( ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ⊆ ( 𝑍 ‘ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) ∧ ran ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ⊆ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) → ran ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ⊆ ( 𝑍 ‘ ran ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ) ) |
| 103 |
28 101 102
|
syl2anc |
⊢ ( 𝜑 → ran ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ⊆ ( 𝑍 ‘ ran ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ) ) |
| 104 |
|
eldifn |
⊢ ( 𝑘 ∈ ( 𝐴 ∖ 𝐶 ) → ¬ 𝑘 ∈ 𝐶 ) |
| 105 |
104
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∖ 𝐶 ) ) → ¬ 𝑘 ∈ 𝐶 ) |
| 106 |
105
|
iffalsed |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∖ 𝐶 ) ) → if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , 0 ) = 0 ) |
| 107 |
106 6
|
suppss2 |
⊢ ( 𝜑 → ( ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) supp 0 ) ⊆ 𝐶 ) |
| 108 |
1 2 4 5 6 100 103 107 14
|
gsumzres |
⊢ ( 𝜑 → ( 𝐺 Σg ( ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ↾ 𝐶 ) ) = ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ) ) |
| 109 |
99 108
|
eqtrd |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝐹 ↾ 𝐶 ) ) = ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ) ) |
| 110 |
43
|
reseq1d |
⊢ ( 𝜑 → ( 𝐹 ↾ 𝐷 ) = ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ↾ 𝐷 ) ) |
| 111 |
|
ssun2 |
⊢ 𝐷 ⊆ ( 𝐶 ∪ 𝐷 ) |
| 112 |
111 11
|
sseqtrrid |
⊢ ( 𝜑 → 𝐷 ⊆ 𝐴 ) |
| 113 |
66
|
mpteq2ia |
⊢ ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) = ( 𝑘 ∈ 𝐷 ↦ ( 𝐹 ‘ 𝑘 ) ) |
| 114 |
|
resmpt |
⊢ ( 𝐷 ⊆ 𝐴 → ( ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ↾ 𝐷 ) = ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ) |
| 115 |
|
resmpt |
⊢ ( 𝐷 ⊆ 𝐴 → ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ↾ 𝐷 ) = ( 𝑘 ∈ 𝐷 ↦ ( 𝐹 ‘ 𝑘 ) ) ) |
| 116 |
113 114 115
|
3eqtr4a |
⊢ ( 𝐷 ⊆ 𝐴 → ( ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ↾ 𝐷 ) = ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ↾ 𝐷 ) ) |
| 117 |
112 116
|
syl |
⊢ ( 𝜑 → ( ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ↾ 𝐷 ) = ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ↾ 𝐷 ) ) |
| 118 |
110 117
|
eqtr4d |
⊢ ( 𝜑 → ( 𝐹 ↾ 𝐷 ) = ( ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ↾ 𝐷 ) ) |
| 119 |
118
|
oveq2d |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝐹 ↾ 𝐷 ) ) = ( 𝐺 Σg ( ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ↾ 𝐷 ) ) ) |
| 120 |
84
|
fmpttd |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) : 𝐴 ⟶ 𝐵 ) |
| 121 |
41
|
frnd |
⊢ ( 𝜑 → ran ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ⊆ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) |
| 122 |
4
|
cntzidss |
⊢ ( ( ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ⊆ ( 𝑍 ‘ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) ∧ ran ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ⊆ ( ( mrCls ‘ ( SubMnd ‘ 𝐺 ) ) ‘ ran 𝐹 ) ) → ran ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ⊆ ( 𝑍 ‘ ran ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ) ) |
| 123 |
28 121 122
|
syl2anc |
⊢ ( 𝜑 → ran ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ⊆ ( 𝑍 ‘ ran ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ) ) |
| 124 |
|
eldifn |
⊢ ( 𝑘 ∈ ( 𝐴 ∖ 𝐷 ) → ¬ 𝑘 ∈ 𝐷 ) |
| 125 |
124
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∖ 𝐷 ) ) → ¬ 𝑘 ∈ 𝐷 ) |
| 126 |
125
|
iffalsed |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∖ 𝐷 ) ) → if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 0 ) = 0 ) |
| 127 |
126 6
|
suppss2 |
⊢ ( 𝜑 → ( ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) supp 0 ) ⊆ 𝐷 ) |
| 128 |
1 2 4 5 6 120 123 127 15
|
gsumzres |
⊢ ( 𝜑 → ( 𝐺 Σg ( ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ↾ 𝐷 ) ) = ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ) ) |
| 129 |
119 128
|
eqtrd |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝐹 ↾ 𝐷 ) ) = ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ) ) |
| 130 |
109 129
|
oveq12d |
⊢ ( 𝜑 → ( ( 𝐺 Σg ( 𝐹 ↾ 𝐶 ) ) + ( 𝐺 Σg ( 𝐹 ↾ 𝐷 ) ) ) = ( ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐶 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ) + ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ if ( 𝑘 ∈ 𝐷 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) ) ) ) |
| 131 |
42 89 130
|
3eqtr4d |
⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) = ( ( 𝐺 Σg ( 𝐹 ↾ 𝐶 ) ) + ( 𝐺 Σg ( 𝐹 ↾ 𝐷 ) ) ) ) |