| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsumzunsnd.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 2 |
|
gsumzunsnd.p |
⊢ + = ( +g ‘ 𝐺 ) |
| 3 |
|
gsumzunsnd.z |
⊢ 𝑍 = ( Cntz ‘ 𝐺 ) |
| 4 |
|
gsumzunsnd.f |
⊢ 𝐹 = ( 𝑘 ∈ ( 𝐴 ∪ { 𝑀 } ) ↦ 𝑋 ) |
| 5 |
|
gsumzunsnd.g |
⊢ ( 𝜑 → 𝐺 ∈ Mnd ) |
| 6 |
|
gsumzunsnd.a |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
| 7 |
|
gsumzunsnd.c |
⊢ ( 𝜑 → ran 𝐹 ⊆ ( 𝑍 ‘ ran 𝐹 ) ) |
| 8 |
|
gsumzunsnd.x |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝑋 ∈ 𝐵 ) |
| 9 |
|
gsumzunsnd.m |
⊢ ( 𝜑 → 𝑀 ∈ 𝑉 ) |
| 10 |
|
gsumzunsnd.d |
⊢ ( 𝜑 → ¬ 𝑀 ∈ 𝐴 ) |
| 11 |
|
gsumzunsnd.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
| 12 |
|
gsumzunsnd.s |
⊢ ( ( 𝜑 ∧ 𝑘 = 𝑀 ) → 𝑋 = 𝑌 ) |
| 13 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
| 14 |
|
snfi |
⊢ { 𝑀 } ∈ Fin |
| 15 |
|
unfi |
⊢ ( ( 𝐴 ∈ Fin ∧ { 𝑀 } ∈ Fin ) → ( 𝐴 ∪ { 𝑀 } ) ∈ Fin ) |
| 16 |
6 14 15
|
sylancl |
⊢ ( 𝜑 → ( 𝐴 ∪ { 𝑀 } ) ∈ Fin ) |
| 17 |
|
elun |
⊢ ( 𝑘 ∈ ( 𝐴 ∪ { 𝑀 } ) ↔ ( 𝑘 ∈ 𝐴 ∨ 𝑘 ∈ { 𝑀 } ) ) |
| 18 |
|
elsni |
⊢ ( 𝑘 ∈ { 𝑀 } → 𝑘 = 𝑀 ) |
| 19 |
18 12
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑀 } ) → 𝑋 = 𝑌 ) |
| 20 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑀 } ) → 𝑌 ∈ 𝐵 ) |
| 21 |
19 20
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑀 } ) → 𝑋 ∈ 𝐵 ) |
| 22 |
8 21
|
jaodan |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝐴 ∨ 𝑘 ∈ { 𝑀 } ) ) → 𝑋 ∈ 𝐵 ) |
| 23 |
17 22
|
sylan2b |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∪ { 𝑀 } ) ) → 𝑋 ∈ 𝐵 ) |
| 24 |
23 4
|
fmptd |
⊢ ( 𝜑 → 𝐹 : ( 𝐴 ∪ { 𝑀 } ) ⟶ 𝐵 ) |
| 25 |
8
|
expcom |
⊢ ( 𝑘 ∈ 𝐴 → ( 𝜑 → 𝑋 ∈ 𝐵 ) ) |
| 26 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 = 𝑀 ) → 𝑌 ∈ 𝐵 ) |
| 27 |
12 26
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑘 = 𝑀 ) → 𝑋 ∈ 𝐵 ) |
| 28 |
27
|
expcom |
⊢ ( 𝑘 = 𝑀 → ( 𝜑 → 𝑋 ∈ 𝐵 ) ) |
| 29 |
18 28
|
syl |
⊢ ( 𝑘 ∈ { 𝑀 } → ( 𝜑 → 𝑋 ∈ 𝐵 ) ) |
| 30 |
25 29
|
jaoi |
⊢ ( ( 𝑘 ∈ 𝐴 ∨ 𝑘 ∈ { 𝑀 } ) → ( 𝜑 → 𝑋 ∈ 𝐵 ) ) |
| 31 |
17 30
|
sylbi |
⊢ ( 𝑘 ∈ ( 𝐴 ∪ { 𝑀 } ) → ( 𝜑 → 𝑋 ∈ 𝐵 ) ) |
| 32 |
31
|
impcom |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∪ { 𝑀 } ) ) → 𝑋 ∈ 𝐵 ) |
| 33 |
|
fvexd |
⊢ ( 𝜑 → ( 0g ‘ 𝐺 ) ∈ V ) |
| 34 |
4 16 32 33
|
fsuppmptdm |
⊢ ( 𝜑 → 𝐹 finSupp ( 0g ‘ 𝐺 ) ) |
| 35 |
|
disjsn |
⊢ ( ( 𝐴 ∩ { 𝑀 } ) = ∅ ↔ ¬ 𝑀 ∈ 𝐴 ) |
| 36 |
10 35
|
sylibr |
⊢ ( 𝜑 → ( 𝐴 ∩ { 𝑀 } ) = ∅ ) |
| 37 |
|
eqidd |
⊢ ( 𝜑 → ( 𝐴 ∪ { 𝑀 } ) = ( 𝐴 ∪ { 𝑀 } ) ) |
| 38 |
1 13 2 3 5 16 24 7 34 36 37
|
gsumzsplit |
⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) = ( ( 𝐺 Σg ( 𝐹 ↾ 𝐴 ) ) + ( 𝐺 Σg ( 𝐹 ↾ { 𝑀 } ) ) ) ) |
| 39 |
4
|
reseq1i |
⊢ ( 𝐹 ↾ 𝐴 ) = ( ( 𝑘 ∈ ( 𝐴 ∪ { 𝑀 } ) ↦ 𝑋 ) ↾ 𝐴 ) |
| 40 |
|
ssun1 |
⊢ 𝐴 ⊆ ( 𝐴 ∪ { 𝑀 } ) |
| 41 |
|
resmpt |
⊢ ( 𝐴 ⊆ ( 𝐴 ∪ { 𝑀 } ) → ( ( 𝑘 ∈ ( 𝐴 ∪ { 𝑀 } ) ↦ 𝑋 ) ↾ 𝐴 ) = ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ) |
| 42 |
40 41
|
mp1i |
⊢ ( 𝜑 → ( ( 𝑘 ∈ ( 𝐴 ∪ { 𝑀 } ) ↦ 𝑋 ) ↾ 𝐴 ) = ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ) |
| 43 |
39 42
|
eqtrid |
⊢ ( 𝜑 → ( 𝐹 ↾ 𝐴 ) = ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ) |
| 44 |
43
|
oveq2d |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝐹 ↾ 𝐴 ) ) = ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ) ) |
| 45 |
4
|
reseq1i |
⊢ ( 𝐹 ↾ { 𝑀 } ) = ( ( 𝑘 ∈ ( 𝐴 ∪ { 𝑀 } ) ↦ 𝑋 ) ↾ { 𝑀 } ) |
| 46 |
|
ssun2 |
⊢ { 𝑀 } ⊆ ( 𝐴 ∪ { 𝑀 } ) |
| 47 |
|
resmpt |
⊢ ( { 𝑀 } ⊆ ( 𝐴 ∪ { 𝑀 } ) → ( ( 𝑘 ∈ ( 𝐴 ∪ { 𝑀 } ) ↦ 𝑋 ) ↾ { 𝑀 } ) = ( 𝑘 ∈ { 𝑀 } ↦ 𝑋 ) ) |
| 48 |
46 47
|
mp1i |
⊢ ( 𝜑 → ( ( 𝑘 ∈ ( 𝐴 ∪ { 𝑀 } ) ↦ 𝑋 ) ↾ { 𝑀 } ) = ( 𝑘 ∈ { 𝑀 } ↦ 𝑋 ) ) |
| 49 |
45 48
|
eqtrid |
⊢ ( 𝜑 → ( 𝐹 ↾ { 𝑀 } ) = ( 𝑘 ∈ { 𝑀 } ↦ 𝑋 ) ) |
| 50 |
49
|
oveq2d |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝐹 ↾ { 𝑀 } ) ) = ( 𝐺 Σg ( 𝑘 ∈ { 𝑀 } ↦ 𝑋 ) ) ) |
| 51 |
44 50
|
oveq12d |
⊢ ( 𝜑 → ( ( 𝐺 Σg ( 𝐹 ↾ 𝐴 ) ) + ( 𝐺 Σg ( 𝐹 ↾ { 𝑀 } ) ) ) = ( ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ) + ( 𝐺 Σg ( 𝑘 ∈ { 𝑀 } ↦ 𝑋 ) ) ) ) |
| 52 |
1 5 9 11 12
|
gsumsnd |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ { 𝑀 } ↦ 𝑋 ) ) = 𝑌 ) |
| 53 |
52
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ) + ( 𝐺 Σg ( 𝑘 ∈ { 𝑀 } ↦ 𝑋 ) ) ) = ( ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ) + 𝑌 ) ) |
| 54 |
38 51 53
|
3eqtrd |
⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) = ( ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ) + 𝑌 ) ) |