Metamath Proof Explorer


Theorem gsumzunsnd

Description: Append an element to a finite group sum, more general version of gsumunsnd . (Contributed by AV, 7-Oct-2019)

Ref Expression
Hypotheses gsumzunsnd.b 𝐵 = ( Base ‘ 𝐺 )
gsumzunsnd.p + = ( +g𝐺 )
gsumzunsnd.z 𝑍 = ( Cntz ‘ 𝐺 )
gsumzunsnd.f 𝐹 = ( 𝑘 ∈ ( 𝐴 ∪ { 𝑀 } ) ↦ 𝑋 )
gsumzunsnd.g ( 𝜑𝐺 ∈ Mnd )
gsumzunsnd.a ( 𝜑𝐴 ∈ Fin )
gsumzunsnd.c ( 𝜑 → ran 𝐹 ⊆ ( 𝑍 ‘ ran 𝐹 ) )
gsumzunsnd.x ( ( 𝜑𝑘𝐴 ) → 𝑋𝐵 )
gsumzunsnd.m ( 𝜑𝑀𝑉 )
gsumzunsnd.d ( 𝜑 → ¬ 𝑀𝐴 )
gsumzunsnd.y ( 𝜑𝑌𝐵 )
gsumzunsnd.s ( ( 𝜑𝑘 = 𝑀 ) → 𝑋 = 𝑌 )
Assertion gsumzunsnd ( 𝜑 → ( 𝐺 Σg 𝐹 ) = ( ( 𝐺 Σg ( 𝑘𝐴𝑋 ) ) + 𝑌 ) )

Proof

Step Hyp Ref Expression
1 gsumzunsnd.b 𝐵 = ( Base ‘ 𝐺 )
2 gsumzunsnd.p + = ( +g𝐺 )
3 gsumzunsnd.z 𝑍 = ( Cntz ‘ 𝐺 )
4 gsumzunsnd.f 𝐹 = ( 𝑘 ∈ ( 𝐴 ∪ { 𝑀 } ) ↦ 𝑋 )
5 gsumzunsnd.g ( 𝜑𝐺 ∈ Mnd )
6 gsumzunsnd.a ( 𝜑𝐴 ∈ Fin )
7 gsumzunsnd.c ( 𝜑 → ran 𝐹 ⊆ ( 𝑍 ‘ ran 𝐹 ) )
8 gsumzunsnd.x ( ( 𝜑𝑘𝐴 ) → 𝑋𝐵 )
9 gsumzunsnd.m ( 𝜑𝑀𝑉 )
10 gsumzunsnd.d ( 𝜑 → ¬ 𝑀𝐴 )
11 gsumzunsnd.y ( 𝜑𝑌𝐵 )
12 gsumzunsnd.s ( ( 𝜑𝑘 = 𝑀 ) → 𝑋 = 𝑌 )
13 eqid ( 0g𝐺 ) = ( 0g𝐺 )
14 snfi { 𝑀 } ∈ Fin
15 unfi ( ( 𝐴 ∈ Fin ∧ { 𝑀 } ∈ Fin ) → ( 𝐴 ∪ { 𝑀 } ) ∈ Fin )
16 6 14 15 sylancl ( 𝜑 → ( 𝐴 ∪ { 𝑀 } ) ∈ Fin )
17 elun ( 𝑘 ∈ ( 𝐴 ∪ { 𝑀 } ) ↔ ( 𝑘𝐴𝑘 ∈ { 𝑀 } ) )
18 elsni ( 𝑘 ∈ { 𝑀 } → 𝑘 = 𝑀 )
19 18 12 sylan2 ( ( 𝜑𝑘 ∈ { 𝑀 } ) → 𝑋 = 𝑌 )
20 11 adantr ( ( 𝜑𝑘 ∈ { 𝑀 } ) → 𝑌𝐵 )
21 19 20 eqeltrd ( ( 𝜑𝑘 ∈ { 𝑀 } ) → 𝑋𝐵 )
22 8 21 jaodan ( ( 𝜑 ∧ ( 𝑘𝐴𝑘 ∈ { 𝑀 } ) ) → 𝑋𝐵 )
23 17 22 sylan2b ( ( 𝜑𝑘 ∈ ( 𝐴 ∪ { 𝑀 } ) ) → 𝑋𝐵 )
24 23 4 fmptd ( 𝜑𝐹 : ( 𝐴 ∪ { 𝑀 } ) ⟶ 𝐵 )
25 8 expcom ( 𝑘𝐴 → ( 𝜑𝑋𝐵 ) )
26 11 adantr ( ( 𝜑𝑘 = 𝑀 ) → 𝑌𝐵 )
27 12 26 eqeltrd ( ( 𝜑𝑘 = 𝑀 ) → 𝑋𝐵 )
28 27 expcom ( 𝑘 = 𝑀 → ( 𝜑𝑋𝐵 ) )
29 18 28 syl ( 𝑘 ∈ { 𝑀 } → ( 𝜑𝑋𝐵 ) )
30 25 29 jaoi ( ( 𝑘𝐴𝑘 ∈ { 𝑀 } ) → ( 𝜑𝑋𝐵 ) )
31 17 30 sylbi ( 𝑘 ∈ ( 𝐴 ∪ { 𝑀 } ) → ( 𝜑𝑋𝐵 ) )
32 31 impcom ( ( 𝜑𝑘 ∈ ( 𝐴 ∪ { 𝑀 } ) ) → 𝑋𝐵 )
33 fvexd ( 𝜑 → ( 0g𝐺 ) ∈ V )
34 4 16 32 33 fsuppmptdm ( 𝜑𝐹 finSupp ( 0g𝐺 ) )
35 disjsn ( ( 𝐴 ∩ { 𝑀 } ) = ∅ ↔ ¬ 𝑀𝐴 )
36 10 35 sylibr ( 𝜑 → ( 𝐴 ∩ { 𝑀 } ) = ∅ )
37 eqidd ( 𝜑 → ( 𝐴 ∪ { 𝑀 } ) = ( 𝐴 ∪ { 𝑀 } ) )
38 1 13 2 3 5 16 24 7 34 36 37 gsumzsplit ( 𝜑 → ( 𝐺 Σg 𝐹 ) = ( ( 𝐺 Σg ( 𝐹𝐴 ) ) + ( 𝐺 Σg ( 𝐹 ↾ { 𝑀 } ) ) ) )
39 4 reseq1i ( 𝐹𝐴 ) = ( ( 𝑘 ∈ ( 𝐴 ∪ { 𝑀 } ) ↦ 𝑋 ) ↾ 𝐴 )
40 ssun1 𝐴 ⊆ ( 𝐴 ∪ { 𝑀 } )
41 resmpt ( 𝐴 ⊆ ( 𝐴 ∪ { 𝑀 } ) → ( ( 𝑘 ∈ ( 𝐴 ∪ { 𝑀 } ) ↦ 𝑋 ) ↾ 𝐴 ) = ( 𝑘𝐴𝑋 ) )
42 40 41 mp1i ( 𝜑 → ( ( 𝑘 ∈ ( 𝐴 ∪ { 𝑀 } ) ↦ 𝑋 ) ↾ 𝐴 ) = ( 𝑘𝐴𝑋 ) )
43 39 42 syl5eq ( 𝜑 → ( 𝐹𝐴 ) = ( 𝑘𝐴𝑋 ) )
44 43 oveq2d ( 𝜑 → ( 𝐺 Σg ( 𝐹𝐴 ) ) = ( 𝐺 Σg ( 𝑘𝐴𝑋 ) ) )
45 4 reseq1i ( 𝐹 ↾ { 𝑀 } ) = ( ( 𝑘 ∈ ( 𝐴 ∪ { 𝑀 } ) ↦ 𝑋 ) ↾ { 𝑀 } )
46 ssun2 { 𝑀 } ⊆ ( 𝐴 ∪ { 𝑀 } )
47 resmpt ( { 𝑀 } ⊆ ( 𝐴 ∪ { 𝑀 } ) → ( ( 𝑘 ∈ ( 𝐴 ∪ { 𝑀 } ) ↦ 𝑋 ) ↾ { 𝑀 } ) = ( 𝑘 ∈ { 𝑀 } ↦ 𝑋 ) )
48 46 47 mp1i ( 𝜑 → ( ( 𝑘 ∈ ( 𝐴 ∪ { 𝑀 } ) ↦ 𝑋 ) ↾ { 𝑀 } ) = ( 𝑘 ∈ { 𝑀 } ↦ 𝑋 ) )
49 45 48 syl5eq ( 𝜑 → ( 𝐹 ↾ { 𝑀 } ) = ( 𝑘 ∈ { 𝑀 } ↦ 𝑋 ) )
50 49 oveq2d ( 𝜑 → ( 𝐺 Σg ( 𝐹 ↾ { 𝑀 } ) ) = ( 𝐺 Σg ( 𝑘 ∈ { 𝑀 } ↦ 𝑋 ) ) )
51 44 50 oveq12d ( 𝜑 → ( ( 𝐺 Σg ( 𝐹𝐴 ) ) + ( 𝐺 Σg ( 𝐹 ↾ { 𝑀 } ) ) ) = ( ( 𝐺 Σg ( 𝑘𝐴𝑋 ) ) + ( 𝐺 Σg ( 𝑘 ∈ { 𝑀 } ↦ 𝑋 ) ) ) )
52 1 5 9 11 12 gsumsnd ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ { 𝑀 } ↦ 𝑋 ) ) = 𝑌 )
53 52 oveq2d ( 𝜑 → ( ( 𝐺 Σg ( 𝑘𝐴𝑋 ) ) + ( 𝐺 Σg ( 𝑘 ∈ { 𝑀 } ↦ 𝑋 ) ) ) = ( ( 𝐺 Σg ( 𝑘𝐴𝑋 ) ) + 𝑌 ) )
54 38 51 53 3eqtrd ( 𝜑 → ( 𝐺 Σg 𝐹 ) = ( ( 𝐺 Σg ( 𝑘𝐴𝑋 ) ) + 𝑌 ) )