Metamath Proof Explorer
Description: Simple relationship between < and > . (Contributed by David A.
Wheeler, 19-Apr-2015) (New usage is discouraged.)
|
|
Ref |
Expression |
|
Assertion |
gt-lt |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 𝐴 > 𝐵 ↔ 𝐵 < 𝐴 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
df-gt |
⊢ > = ◡ < |
2 |
1
|
breqi |
⊢ ( 𝐴 > 𝐵 ↔ 𝐴 ◡ < 𝐵 ) |
3 |
|
brcnvg |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 𝐴 ◡ < 𝐵 ↔ 𝐵 < 𝐴 ) ) |
4 |
2 3
|
syl5bb |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 𝐴 > 𝐵 ↔ 𝐵 < 𝐴 ) ) |