Metamath Proof Explorer


Theorem gt-lt

Description: Simple relationship between < and > . (Contributed by David A. Wheeler, 19-Apr-2015) (New usage is discouraged.)

Ref Expression
Assertion gt-lt ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 𝐴 > 𝐵𝐵 < 𝐴 ) )

Proof

Step Hyp Ref Expression
1 df-gt > = <
2 1 breqi ( 𝐴 > 𝐵𝐴 < 𝐵 )
3 brcnvg ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 𝐴 < 𝐵𝐵 < 𝐴 ) )
4 2 3 syl5bb ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 𝐴 > 𝐵𝐵 < 𝐴 ) )