Metamath Proof Explorer


Theorem gt-lth

Description: Relationship between < and > using hypotheses. (Contributed by David A. Wheeler, 19-Apr-2015) (New usage is discouraged.)

Ref Expression
Hypotheses gt-lth.1 𝐴 ∈ V
gt-lth.2 𝐵 ∈ V
Assertion gt-lth ( 𝐴 > 𝐵𝐵 < 𝐴 )

Proof

Step Hyp Ref Expression
1 gt-lth.1 𝐴 ∈ V
2 gt-lth.2 𝐵 ∈ V
3 df-gt > = <
4 3 breqi ( 𝐴 > 𝐵𝐴 < 𝐵 )
5 1 2 brcnv ( 𝐴 < 𝐵𝐵 < 𝐴 )
6 4 5 bitri ( 𝐴 > 𝐵𝐵 < 𝐴 )