Step |
Hyp |
Ref |
Expression |
1 |
|
0re |
⊢ 0 ∈ ℝ |
2 |
|
ltdiv1 |
⊢ ( ( 0 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → ( 0 < 𝐴 ↔ ( 0 / 𝐵 ) < ( 𝐴 / 𝐵 ) ) ) |
3 |
1 2
|
mp3an1 |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → ( 0 < 𝐴 ↔ ( 0 / 𝐵 ) < ( 𝐴 / 𝐵 ) ) ) |
4 |
3
|
3impb |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) → ( 0 < 𝐴 ↔ ( 0 / 𝐵 ) < ( 𝐴 / 𝐵 ) ) ) |
5 |
|
recn |
⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℂ ) |
6 |
|
gt0ne0 |
⊢ ( ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) → 𝐵 ≠ 0 ) |
7 |
|
div0 |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( 0 / 𝐵 ) = 0 ) |
8 |
5 6 7
|
syl2an2r |
⊢ ( ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) → ( 0 / 𝐵 ) = 0 ) |
9 |
8
|
breq1d |
⊢ ( ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) → ( ( 0 / 𝐵 ) < ( 𝐴 / 𝐵 ) ↔ 0 < ( 𝐴 / 𝐵 ) ) ) |
10 |
9
|
3adant1 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) → ( ( 0 / 𝐵 ) < ( 𝐴 / 𝐵 ) ↔ 0 < ( 𝐴 / 𝐵 ) ) ) |
11 |
4 10
|
bitrd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) → ( 0 < 𝐴 ↔ 0 < ( 𝐴 / 𝐵 ) ) ) |