Metamath Proof Explorer


Theorem gt0ne0

Description: Positive implies nonzero. (Contributed by NM, 3-Oct-1999) (Proof shortened by Mario Carneiro, 27-May-2016)

Ref Expression
Assertion gt0ne0 ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → 𝐴 ≠ 0 )

Proof

Step Hyp Ref Expression
1 0red ( 𝐴 ∈ ℝ → 0 ∈ ℝ )
2 ltne ( ( 0 ∈ ℝ ∧ 0 < 𝐴 ) → 𝐴 ≠ 0 )
3 1 2 sylan ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → 𝐴 ≠ 0 )