Metamath Proof Explorer


Theorem gt0ne0d

Description: Positive implies nonzero. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypothesis gt0ne0d.1 ( 𝜑 → 0 < 𝐴 )
Assertion gt0ne0d ( 𝜑𝐴 ≠ 0 )

Proof

Step Hyp Ref Expression
1 gt0ne0d.1 ( 𝜑 → 0 < 𝐴 )
2 0red ( 𝜑 → 0 ∈ ℝ )
3 2 1 gtned ( 𝜑𝐴 ≠ 0 )