Description: Positive implies nonzero. (Contributed by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | gt0ne0d.1 | ⊢ ( 𝜑 → 0 < 𝐴 ) | |
| Assertion | gt0ne0d | ⊢ ( 𝜑 → 𝐴 ≠ 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gt0ne0d.1 | ⊢ ( 𝜑 → 0 < 𝐴 ) | |
| 2 | 0re | ⊢ 0 ∈ ℝ | |
| 3 | ltne | ⊢ ( ( 0 ∈ ℝ ∧ 0 < 𝐴 ) → 𝐴 ≠ 0 ) | |
| 4 | 2 1 3 | sylancr | ⊢ ( 𝜑 → 𝐴 ≠ 0 ) |