Metamath Proof Explorer


Theorem gt0ne0ii

Description: Positive implies nonzero. (Contributed by NM, 15-May-1999)

Ref Expression
Hypotheses lt2.1 𝐴 ∈ ℝ
gt0ne0i.2 0 < 𝐴
Assertion gt0ne0ii 𝐴 ≠ 0

Proof

Step Hyp Ref Expression
1 lt2.1 𝐴 ∈ ℝ
2 gt0ne0i.2 0 < 𝐴
3 1 gt0ne0i ( 0 < 𝐴𝐴 ≠ 0 )
4 2 3 ax-mp 𝐴 ≠ 0