Metamath Proof Explorer


Theorem gt0srpr

Description: Greater than zero in terms of positive reals. (Contributed by NM, 13-May-1996) (New usage is discouraged.)

Ref Expression
Assertion gt0srpr ( 0R <R [ ⟨ 𝐴 , 𝐵 ⟩ ] ~R𝐵 <P 𝐴 )

Proof

Step Hyp Ref Expression
1 ltsrpr ( [ ⟨ 1P , 1P ⟩ ] ~R <R [ ⟨ 𝐴 , 𝐵 ⟩ ] ~R ↔ ( 1P +P 𝐵 ) <P ( 1P +P 𝐴 ) )
2 df-0r 0R = [ ⟨ 1P , 1P ⟩ ] ~R
3 2 breq1i ( 0R <R [ ⟨ 𝐴 , 𝐵 ⟩ ] ~R ↔ [ ⟨ 1P , 1P ⟩ ] ~R <R [ ⟨ 𝐴 , 𝐵 ⟩ ] ~R )
4 1pr 1PP
5 ltapr ( 1PP → ( 𝐵 <P 𝐴 ↔ ( 1P +P 𝐵 ) <P ( 1P +P 𝐴 ) ) )
6 4 5 ax-mp ( 𝐵 <P 𝐴 ↔ ( 1P +P 𝐵 ) <P ( 1P +P 𝐴 ) )
7 1 3 6 3bitr4i ( 0R <R [ ⟨ 𝐴 , 𝐵 ⟩ ] ~R𝐵 <P 𝐴 )