Metamath Proof Explorer


Theorem gte-lte

Description: Simple relationship between <_ and >_ . (Contributed by David A. Wheeler, 10-May-2015) (New usage is discouraged.)

Ref Expression
Assertion gte-lte ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 𝐴𝐵𝐵𝐴 ) )

Proof

Step Hyp Ref Expression
1 df-gte ≥ =
2 1 breqi ( 𝐴𝐵𝐴 𝐵 )
3 brcnvg ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 𝐴 𝐵𝐵𝐴 ) )
4 2 3 syl5bb ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 𝐴𝐵𝐵𝐴 ) )