Metamath Proof Explorer
Description: Simple relationship between <_ and >_ . (Contributed by David A.
Wheeler, 10-May-2015) (New usage is discouraged.)
|
|
Ref |
Expression |
|
Assertion |
gte-lte |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 𝐴 ≥ 𝐵 ↔ 𝐵 ≤ 𝐴 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
df-gte |
⊢ ≥ = ◡ ≤ |
2 |
1
|
breqi |
⊢ ( 𝐴 ≥ 𝐵 ↔ 𝐴 ◡ ≤ 𝐵 ) |
3 |
|
brcnvg |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 𝐴 ◡ ≤ 𝐵 ↔ 𝐵 ≤ 𝐴 ) ) |
4 |
2 3
|
syl5bb |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 𝐴 ≥ 𝐵 ↔ 𝐵 ≤ 𝐴 ) ) |