| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid | ⊢ ( ( 𝐴  ×  𝐴 )  ∖   <  )  =  ( ( 𝐴  ×  𝐴 )  ∖   <  ) | 
						
							| 2 |  | eqid | ⊢ ( ( 𝐵  ×  𝐵 )  ∖  ◡  <  )  =  ( ( 𝐵  ×  𝐵 )  ∖  ◡  <  ) | 
						
							| 3 | 1 2 | isocnv3 | ⊢ ( 𝐹  Isom   <  ,  ◡  <  ( 𝐴 ,  𝐵 )  ↔  𝐹  Isom  ( ( 𝐴  ×  𝐴 )  ∖   <  ) ,  ( ( 𝐵  ×  𝐵 )  ∖  ◡  <  ) ( 𝐴 ,  𝐵 ) ) | 
						
							| 4 | 3 | a1i | ⊢ ( ( 𝐴  ⊆  ℝ*  ∧  𝐵  ⊆  ℝ* )  →  ( 𝐹  Isom   <  ,  ◡  <  ( 𝐴 ,  𝐵 )  ↔  𝐹  Isom  ( ( 𝐴  ×  𝐴 )  ∖   <  ) ,  ( ( 𝐵  ×  𝐵 )  ∖  ◡  <  ) ( 𝐴 ,  𝐵 ) ) ) | 
						
							| 5 |  | df-le | ⊢  ≤   =  ( ( ℝ*  ×  ℝ* )  ∖  ◡  <  ) | 
						
							| 6 | 5 | cnveqi | ⊢ ◡  ≤   =  ◡ ( ( ℝ*  ×  ℝ* )  ∖  ◡  <  ) | 
						
							| 7 |  | cnvdif | ⊢ ◡ ( ( ℝ*  ×  ℝ* )  ∖  ◡  <  )  =  ( ◡ ( ℝ*  ×  ℝ* )  ∖  ◡ ◡  <  ) | 
						
							| 8 |  | cnvxp | ⊢ ◡ ( ℝ*  ×  ℝ* )  =  ( ℝ*  ×  ℝ* ) | 
						
							| 9 |  | ltrel | ⊢ Rel   < | 
						
							| 10 |  | dfrel2 | ⊢ ( Rel   <   ↔  ◡ ◡  <   =   <  ) | 
						
							| 11 | 9 10 | mpbi | ⊢ ◡ ◡  <   =   < | 
						
							| 12 | 8 11 | difeq12i | ⊢ ( ◡ ( ℝ*  ×  ℝ* )  ∖  ◡ ◡  <  )  =  ( ( ℝ*  ×  ℝ* )  ∖   <  ) | 
						
							| 13 | 6 7 12 | 3eqtri | ⊢ ◡  ≤   =  ( ( ℝ*  ×  ℝ* )  ∖   <  ) | 
						
							| 14 | 13 | ineq1i | ⊢ ( ◡  ≤   ∩  ( 𝐴  ×  𝐴 ) )  =  ( ( ( ℝ*  ×  ℝ* )  ∖   <  )  ∩  ( 𝐴  ×  𝐴 ) ) | 
						
							| 15 |  | indif1 | ⊢ ( ( ( ℝ*  ×  ℝ* )  ∖   <  )  ∩  ( 𝐴  ×  𝐴 ) )  =  ( ( ( ℝ*  ×  ℝ* )  ∩  ( 𝐴  ×  𝐴 ) )  ∖   <  ) | 
						
							| 16 | 14 15 | eqtri | ⊢ ( ◡  ≤   ∩  ( 𝐴  ×  𝐴 ) )  =  ( ( ( ℝ*  ×  ℝ* )  ∩  ( 𝐴  ×  𝐴 ) )  ∖   <  ) | 
						
							| 17 |  | xpss12 | ⊢ ( ( 𝐴  ⊆  ℝ*  ∧  𝐴  ⊆  ℝ* )  →  ( 𝐴  ×  𝐴 )  ⊆  ( ℝ*  ×  ℝ* ) ) | 
						
							| 18 | 17 | anidms | ⊢ ( 𝐴  ⊆  ℝ*  →  ( 𝐴  ×  𝐴 )  ⊆  ( ℝ*  ×  ℝ* ) ) | 
						
							| 19 |  | sseqin2 | ⊢ ( ( 𝐴  ×  𝐴 )  ⊆  ( ℝ*  ×  ℝ* )  ↔  ( ( ℝ*  ×  ℝ* )  ∩  ( 𝐴  ×  𝐴 ) )  =  ( 𝐴  ×  𝐴 ) ) | 
						
							| 20 | 18 19 | sylib | ⊢ ( 𝐴  ⊆  ℝ*  →  ( ( ℝ*  ×  ℝ* )  ∩  ( 𝐴  ×  𝐴 ) )  =  ( 𝐴  ×  𝐴 ) ) | 
						
							| 21 | 20 | difeq1d | ⊢ ( 𝐴  ⊆  ℝ*  →  ( ( ( ℝ*  ×  ℝ* )  ∩  ( 𝐴  ×  𝐴 ) )  ∖   <  )  =  ( ( 𝐴  ×  𝐴 )  ∖   <  ) ) | 
						
							| 22 | 16 21 | eqtr2id | ⊢ ( 𝐴  ⊆  ℝ*  →  ( ( 𝐴  ×  𝐴 )  ∖   <  )  =  ( ◡  ≤   ∩  ( 𝐴  ×  𝐴 ) ) ) | 
						
							| 23 | 22 | adantr | ⊢ ( ( 𝐴  ⊆  ℝ*  ∧  𝐵  ⊆  ℝ* )  →  ( ( 𝐴  ×  𝐴 )  ∖   <  )  =  ( ◡  ≤   ∩  ( 𝐴  ×  𝐴 ) ) ) | 
						
							| 24 |  | isoeq2 | ⊢ ( ( ( 𝐴  ×  𝐴 )  ∖   <  )  =  ( ◡  ≤   ∩  ( 𝐴  ×  𝐴 ) )  →  ( 𝐹  Isom  ( ( 𝐴  ×  𝐴 )  ∖   <  ) ,  ( ( 𝐵  ×  𝐵 )  ∖  ◡  <  ) ( 𝐴 ,  𝐵 )  ↔  𝐹  Isom  ( ◡  ≤   ∩  ( 𝐴  ×  𝐴 ) ) ,  ( ( 𝐵  ×  𝐵 )  ∖  ◡  <  ) ( 𝐴 ,  𝐵 ) ) ) | 
						
							| 25 | 23 24 | syl | ⊢ ( ( 𝐴  ⊆  ℝ*  ∧  𝐵  ⊆  ℝ* )  →  ( 𝐹  Isom  ( ( 𝐴  ×  𝐴 )  ∖   <  ) ,  ( ( 𝐵  ×  𝐵 )  ∖  ◡  <  ) ( 𝐴 ,  𝐵 )  ↔  𝐹  Isom  ( ◡  ≤   ∩  ( 𝐴  ×  𝐴 ) ) ,  ( ( 𝐵  ×  𝐵 )  ∖  ◡  <  ) ( 𝐴 ,  𝐵 ) ) ) | 
						
							| 26 | 5 | ineq1i | ⊢ (  ≤   ∩  ( 𝐵  ×  𝐵 ) )  =  ( ( ( ℝ*  ×  ℝ* )  ∖  ◡  <  )  ∩  ( 𝐵  ×  𝐵 ) ) | 
						
							| 27 |  | indif1 | ⊢ ( ( ( ℝ*  ×  ℝ* )  ∖  ◡  <  )  ∩  ( 𝐵  ×  𝐵 ) )  =  ( ( ( ℝ*  ×  ℝ* )  ∩  ( 𝐵  ×  𝐵 ) )  ∖  ◡  <  ) | 
						
							| 28 | 26 27 | eqtri | ⊢ (  ≤   ∩  ( 𝐵  ×  𝐵 ) )  =  ( ( ( ℝ*  ×  ℝ* )  ∩  ( 𝐵  ×  𝐵 ) )  ∖  ◡  <  ) | 
						
							| 29 |  | xpss12 | ⊢ ( ( 𝐵  ⊆  ℝ*  ∧  𝐵  ⊆  ℝ* )  →  ( 𝐵  ×  𝐵 )  ⊆  ( ℝ*  ×  ℝ* ) ) | 
						
							| 30 | 29 | anidms | ⊢ ( 𝐵  ⊆  ℝ*  →  ( 𝐵  ×  𝐵 )  ⊆  ( ℝ*  ×  ℝ* ) ) | 
						
							| 31 |  | sseqin2 | ⊢ ( ( 𝐵  ×  𝐵 )  ⊆  ( ℝ*  ×  ℝ* )  ↔  ( ( ℝ*  ×  ℝ* )  ∩  ( 𝐵  ×  𝐵 ) )  =  ( 𝐵  ×  𝐵 ) ) | 
						
							| 32 | 30 31 | sylib | ⊢ ( 𝐵  ⊆  ℝ*  →  ( ( ℝ*  ×  ℝ* )  ∩  ( 𝐵  ×  𝐵 ) )  =  ( 𝐵  ×  𝐵 ) ) | 
						
							| 33 | 32 | difeq1d | ⊢ ( 𝐵  ⊆  ℝ*  →  ( ( ( ℝ*  ×  ℝ* )  ∩  ( 𝐵  ×  𝐵 ) )  ∖  ◡  <  )  =  ( ( 𝐵  ×  𝐵 )  ∖  ◡  <  ) ) | 
						
							| 34 | 28 33 | eqtr2id | ⊢ ( 𝐵  ⊆  ℝ*  →  ( ( 𝐵  ×  𝐵 )  ∖  ◡  <  )  =  (  ≤   ∩  ( 𝐵  ×  𝐵 ) ) ) | 
						
							| 35 | 34 | adantl | ⊢ ( ( 𝐴  ⊆  ℝ*  ∧  𝐵  ⊆  ℝ* )  →  ( ( 𝐵  ×  𝐵 )  ∖  ◡  <  )  =  (  ≤   ∩  ( 𝐵  ×  𝐵 ) ) ) | 
						
							| 36 |  | isoeq3 | ⊢ ( ( ( 𝐵  ×  𝐵 )  ∖  ◡  <  )  =  (  ≤   ∩  ( 𝐵  ×  𝐵 ) )  →  ( 𝐹  Isom  ( ◡  ≤   ∩  ( 𝐴  ×  𝐴 ) ) ,  ( ( 𝐵  ×  𝐵 )  ∖  ◡  <  ) ( 𝐴 ,  𝐵 )  ↔  𝐹  Isom  ( ◡  ≤   ∩  ( 𝐴  ×  𝐴 ) ) ,  (  ≤   ∩  ( 𝐵  ×  𝐵 ) ) ( 𝐴 ,  𝐵 ) ) ) | 
						
							| 37 | 35 36 | syl | ⊢ ( ( 𝐴  ⊆  ℝ*  ∧  𝐵  ⊆  ℝ* )  →  ( 𝐹  Isom  ( ◡  ≤   ∩  ( 𝐴  ×  𝐴 ) ) ,  ( ( 𝐵  ×  𝐵 )  ∖  ◡  <  ) ( 𝐴 ,  𝐵 )  ↔  𝐹  Isom  ( ◡  ≤   ∩  ( 𝐴  ×  𝐴 ) ) ,  (  ≤   ∩  ( 𝐵  ×  𝐵 ) ) ( 𝐴 ,  𝐵 ) ) ) | 
						
							| 38 | 4 25 37 | 3bitrd | ⊢ ( ( 𝐴  ⊆  ℝ*  ∧  𝐵  ⊆  ℝ* )  →  ( 𝐹  Isom   <  ,  ◡  <  ( 𝐴 ,  𝐵 )  ↔  𝐹  Isom  ( ◡  ≤   ∩  ( 𝐴  ×  𝐴 ) ) ,  (  ≤   ∩  ( 𝐵  ×  𝐵 ) ) ( 𝐴 ,  𝐵 ) ) ) | 
						
							| 39 |  | isocnv2 | ⊢ ( 𝐹  Isom  ◡  ≤  ,   ≤  ( 𝐴 ,  𝐵 )  ↔  𝐹  Isom  ◡ ◡  ≤  ,  ◡  ≤  ( 𝐴 ,  𝐵 ) ) | 
						
							| 40 |  | isores2 | ⊢ ( 𝐹  Isom  ◡  ≤  ,   ≤  ( 𝐴 ,  𝐵 )  ↔  𝐹  Isom  ◡  ≤  ,  (  ≤   ∩  ( 𝐵  ×  𝐵 ) ) ( 𝐴 ,  𝐵 ) ) | 
						
							| 41 |  | isores1 | ⊢ ( 𝐹  Isom  ◡  ≤  ,  (  ≤   ∩  ( 𝐵  ×  𝐵 ) ) ( 𝐴 ,  𝐵 )  ↔  𝐹  Isom  ( ◡  ≤   ∩  ( 𝐴  ×  𝐴 ) ) ,  (  ≤   ∩  ( 𝐵  ×  𝐵 ) ) ( 𝐴 ,  𝐵 ) ) | 
						
							| 42 | 40 41 | bitri | ⊢ ( 𝐹  Isom  ◡  ≤  ,   ≤  ( 𝐴 ,  𝐵 )  ↔  𝐹  Isom  ( ◡  ≤   ∩  ( 𝐴  ×  𝐴 ) ) ,  (  ≤   ∩  ( 𝐵  ×  𝐵 ) ) ( 𝐴 ,  𝐵 ) ) | 
						
							| 43 |  | lerel | ⊢ Rel   ≤ | 
						
							| 44 |  | dfrel2 | ⊢ ( Rel   ≤   ↔  ◡ ◡  ≤   =   ≤  ) | 
						
							| 45 | 43 44 | mpbi | ⊢ ◡ ◡  ≤   =   ≤ | 
						
							| 46 |  | isoeq2 | ⊢ ( ◡ ◡  ≤   =   ≤   →  ( 𝐹  Isom  ◡ ◡  ≤  ,  ◡  ≤  ( 𝐴 ,  𝐵 )  ↔  𝐹  Isom   ≤  ,  ◡  ≤  ( 𝐴 ,  𝐵 ) ) ) | 
						
							| 47 | 45 46 | ax-mp | ⊢ ( 𝐹  Isom  ◡ ◡  ≤  ,  ◡  ≤  ( 𝐴 ,  𝐵 )  ↔  𝐹  Isom   ≤  ,  ◡  ≤  ( 𝐴 ,  𝐵 ) ) | 
						
							| 48 | 39 42 47 | 3bitr3ri | ⊢ ( 𝐹  Isom   ≤  ,  ◡  ≤  ( 𝐴 ,  𝐵 )  ↔  𝐹  Isom  ( ◡  ≤   ∩  ( 𝐴  ×  𝐴 ) ) ,  (  ≤   ∩  ( 𝐵  ×  𝐵 ) ) ( 𝐴 ,  𝐵 ) ) | 
						
							| 49 | 38 48 | bitr4di | ⊢ ( ( 𝐴  ⊆  ℝ*  ∧  𝐵  ⊆  ℝ* )  →  ( 𝐹  Isom   <  ,  ◡  <  ( 𝐴 ,  𝐵 )  ↔  𝐹  Isom   ≤  ,  ◡  ≤  ( 𝐴 ,  𝐵 ) ) ) |