Metamath Proof Explorer


Theorem gtned

Description: 'Less than' implies not equal. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses ltd.1 ( 𝜑𝐴 ∈ ℝ )
ltned.2 ( 𝜑𝐴 < 𝐵 )
Assertion gtned ( 𝜑𝐵𝐴 )

Proof

Step Hyp Ref Expression
1 ltd.1 ( 𝜑𝐴 ∈ ℝ )
2 ltned.2 ( 𝜑𝐴 < 𝐵 )
3 ltne ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 𝐵 ) → 𝐵𝐴 )
4 1 2 3 syl2anc ( 𝜑𝐵𝐴 )