Description: 'Less than' implies not equal. (Contributed by Mario Carneiro, 27-May-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ltd.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
ltned.2 | ⊢ ( 𝜑 → 𝐴 < 𝐵 ) | ||
Assertion | gtned | ⊢ ( 𝜑 → 𝐵 ≠ 𝐴 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltd.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
2 | ltned.2 | ⊢ ( 𝜑 → 𝐴 < 𝐵 ) | |
3 | ltne | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 𝐵 ) → 𝐵 ≠ 𝐴 ) | |
4 | 1 2 3 | syl2anc | ⊢ ( 𝜑 → 𝐵 ≠ 𝐴 ) |