Description: 'Less than' implies not equal. (Contributed by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ltd.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| ltned.2 | ⊢ ( 𝜑 → 𝐴 < 𝐵 ) | ||
| Assertion | gtned | ⊢ ( 𝜑 → 𝐵 ≠ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltd.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 2 | ltned.2 | ⊢ ( 𝜑 → 𝐴 < 𝐵 ) | |
| 3 | ltne | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 𝐵 ) → 𝐵 ≠ 𝐴 ) | |
| 4 | 1 2 3 | syl2anc | ⊢ ( 𝜑 → 𝐵 ≠ 𝐴 ) |