Metamath Proof Explorer


Theorem gtneii

Description: 'Less than' implies not equal. (Contributed by Mario Carneiro, 30-Sep-2013)

Ref Expression
Hypotheses lt.1 𝐴 ∈ ℝ
ltneii.2 𝐴 < 𝐵
Assertion gtneii 𝐵𝐴

Proof

Step Hyp Ref Expression
1 lt.1 𝐴 ∈ ℝ
2 ltneii.2 𝐴 < 𝐵
3 ltne ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 𝐵 ) → 𝐵𝐴 )
4 1 2 3 mp2an 𝐵𝐴