Step |
Hyp |
Ref |
Expression |
1 |
|
gtnelicc.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
2 |
|
gtnelicc.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
3 |
|
gtnelicc.c |
⊢ ( 𝜑 → 𝐶 ∈ ℝ* ) |
4 |
|
gtnelicc.bltc |
⊢ ( 𝜑 → 𝐵 < 𝐶 ) |
5 |
2
|
rexrd |
⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
6 |
|
xrltnle |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 𝐵 < 𝐶 ↔ ¬ 𝐶 ≤ 𝐵 ) ) |
7 |
5 3 6
|
syl2anc |
⊢ ( 𝜑 → ( 𝐵 < 𝐶 ↔ ¬ 𝐶 ≤ 𝐵 ) ) |
8 |
4 7
|
mpbid |
⊢ ( 𝜑 → ¬ 𝐶 ≤ 𝐵 ) |
9 |
8
|
intnand |
⊢ ( 𝜑 → ¬ ( 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵 ) ) |
10 |
|
elicc4 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵 ) ) ) |
11 |
1 5 3 10
|
syl3anc |
⊢ ( 𝜑 → ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵 ) ) ) |
12 |
9 11
|
mtbird |
⊢ ( 𝜑 → ¬ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) |