Metamath Proof Explorer


Theorem gtnelicc

Description: A real number greater than the upper bound of a closed interval is not an element of the interval. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses gtnelicc.a ( 𝜑𝐴 ∈ ℝ* )
gtnelicc.b ( 𝜑𝐵 ∈ ℝ )
gtnelicc.c ( 𝜑𝐶 ∈ ℝ* )
gtnelicc.bltc ( 𝜑𝐵 < 𝐶 )
Assertion gtnelicc ( 𝜑 → ¬ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) )

Proof

Step Hyp Ref Expression
1 gtnelicc.a ( 𝜑𝐴 ∈ ℝ* )
2 gtnelicc.b ( 𝜑𝐵 ∈ ℝ )
3 gtnelicc.c ( 𝜑𝐶 ∈ ℝ* )
4 gtnelicc.bltc ( 𝜑𝐵 < 𝐶 )
5 2 rexrd ( 𝜑𝐵 ∈ ℝ* )
6 xrltnle ( ( 𝐵 ∈ ℝ*𝐶 ∈ ℝ* ) → ( 𝐵 < 𝐶 ↔ ¬ 𝐶𝐵 ) )
7 5 3 6 syl2anc ( 𝜑 → ( 𝐵 < 𝐶 ↔ ¬ 𝐶𝐵 ) )
8 4 7 mpbid ( 𝜑 → ¬ 𝐶𝐵 )
9 8 intnand ( 𝜑 → ¬ ( 𝐴𝐶𝐶𝐵 ) )
10 elicc4 ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ* ) → ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝐴𝐶𝐶𝐵 ) ) )
11 1 5 3 10 syl3anc ( 𝜑 → ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝐴𝐶𝐶𝐵 ) ) )
12 9 11 mtbird ( 𝜑 → ¬ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) )