Step |
Hyp |
Ref |
Expression |
1 |
|
gzcn |
⊢ ( 𝐴 ∈ ℤ[i] → 𝐴 ∈ ℂ ) |
2 |
1
|
absvalsq2d |
⊢ ( 𝐴 ∈ ℤ[i] → ( ( abs ‘ 𝐴 ) ↑ 2 ) = ( ( ( ℜ ‘ 𝐴 ) ↑ 2 ) + ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) ) |
3 |
|
elgz |
⊢ ( 𝐴 ∈ ℤ[i] ↔ ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ℤ ∧ ( ℑ ‘ 𝐴 ) ∈ ℤ ) ) |
4 |
3
|
simp2bi |
⊢ ( 𝐴 ∈ ℤ[i] → ( ℜ ‘ 𝐴 ) ∈ ℤ ) |
5 |
|
zsqcl2 |
⊢ ( ( ℜ ‘ 𝐴 ) ∈ ℤ → ( ( ℜ ‘ 𝐴 ) ↑ 2 ) ∈ ℕ0 ) |
6 |
4 5
|
syl |
⊢ ( 𝐴 ∈ ℤ[i] → ( ( ℜ ‘ 𝐴 ) ↑ 2 ) ∈ ℕ0 ) |
7 |
3
|
simp3bi |
⊢ ( 𝐴 ∈ ℤ[i] → ( ℑ ‘ 𝐴 ) ∈ ℤ ) |
8 |
|
zsqcl2 |
⊢ ( ( ℑ ‘ 𝐴 ) ∈ ℤ → ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ∈ ℕ0 ) |
9 |
7 8
|
syl |
⊢ ( 𝐴 ∈ ℤ[i] → ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ∈ ℕ0 ) |
10 |
6 9
|
nn0addcld |
⊢ ( 𝐴 ∈ ℤ[i] → ( ( ( ℜ ‘ 𝐴 ) ↑ 2 ) + ( ( ℑ ‘ 𝐴 ) ↑ 2 ) ) ∈ ℕ0 ) |
11 |
2 10
|
eqeltrd |
⊢ ( 𝐴 ∈ ℤ[i] → ( ( abs ‘ 𝐴 ) ↑ 2 ) ∈ ℕ0 ) |