Step |
Hyp |
Ref |
Expression |
1 |
|
gzcn |
⊢ ( 𝐴 ∈ ℤ[i] → 𝐴 ∈ ℂ ) |
2 |
|
gzcn |
⊢ ( 𝐵 ∈ ℤ[i] → 𝐵 ∈ ℂ ) |
3 |
|
addcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 + 𝐵 ) ∈ ℂ ) |
4 |
1 2 3
|
syl2an |
⊢ ( ( 𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i] ) → ( 𝐴 + 𝐵 ) ∈ ℂ ) |
5 |
|
readd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ℜ ‘ ( 𝐴 + 𝐵 ) ) = ( ( ℜ ‘ 𝐴 ) + ( ℜ ‘ 𝐵 ) ) ) |
6 |
1 2 5
|
syl2an |
⊢ ( ( 𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i] ) → ( ℜ ‘ ( 𝐴 + 𝐵 ) ) = ( ( ℜ ‘ 𝐴 ) + ( ℜ ‘ 𝐵 ) ) ) |
7 |
|
elgz |
⊢ ( 𝐴 ∈ ℤ[i] ↔ ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ℤ ∧ ( ℑ ‘ 𝐴 ) ∈ ℤ ) ) |
8 |
7
|
simp2bi |
⊢ ( 𝐴 ∈ ℤ[i] → ( ℜ ‘ 𝐴 ) ∈ ℤ ) |
9 |
|
elgz |
⊢ ( 𝐵 ∈ ℤ[i] ↔ ( 𝐵 ∈ ℂ ∧ ( ℜ ‘ 𝐵 ) ∈ ℤ ∧ ( ℑ ‘ 𝐵 ) ∈ ℤ ) ) |
10 |
9
|
simp2bi |
⊢ ( 𝐵 ∈ ℤ[i] → ( ℜ ‘ 𝐵 ) ∈ ℤ ) |
11 |
|
zaddcl |
⊢ ( ( ( ℜ ‘ 𝐴 ) ∈ ℤ ∧ ( ℜ ‘ 𝐵 ) ∈ ℤ ) → ( ( ℜ ‘ 𝐴 ) + ( ℜ ‘ 𝐵 ) ) ∈ ℤ ) |
12 |
8 10 11
|
syl2an |
⊢ ( ( 𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i] ) → ( ( ℜ ‘ 𝐴 ) + ( ℜ ‘ 𝐵 ) ) ∈ ℤ ) |
13 |
6 12
|
eqeltrd |
⊢ ( ( 𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i] ) → ( ℜ ‘ ( 𝐴 + 𝐵 ) ) ∈ ℤ ) |
14 |
|
imadd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ℑ ‘ ( 𝐴 + 𝐵 ) ) = ( ( ℑ ‘ 𝐴 ) + ( ℑ ‘ 𝐵 ) ) ) |
15 |
1 2 14
|
syl2an |
⊢ ( ( 𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i] ) → ( ℑ ‘ ( 𝐴 + 𝐵 ) ) = ( ( ℑ ‘ 𝐴 ) + ( ℑ ‘ 𝐵 ) ) ) |
16 |
7
|
simp3bi |
⊢ ( 𝐴 ∈ ℤ[i] → ( ℑ ‘ 𝐴 ) ∈ ℤ ) |
17 |
9
|
simp3bi |
⊢ ( 𝐵 ∈ ℤ[i] → ( ℑ ‘ 𝐵 ) ∈ ℤ ) |
18 |
|
zaddcl |
⊢ ( ( ( ℑ ‘ 𝐴 ) ∈ ℤ ∧ ( ℑ ‘ 𝐵 ) ∈ ℤ ) → ( ( ℑ ‘ 𝐴 ) + ( ℑ ‘ 𝐵 ) ) ∈ ℤ ) |
19 |
16 17 18
|
syl2an |
⊢ ( ( 𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i] ) → ( ( ℑ ‘ 𝐴 ) + ( ℑ ‘ 𝐵 ) ) ∈ ℤ ) |
20 |
15 19
|
eqeltrd |
⊢ ( ( 𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i] ) → ( ℑ ‘ ( 𝐴 + 𝐵 ) ) ∈ ℤ ) |
21 |
|
elgz |
⊢ ( ( 𝐴 + 𝐵 ) ∈ ℤ[i] ↔ ( ( 𝐴 + 𝐵 ) ∈ ℂ ∧ ( ℜ ‘ ( 𝐴 + 𝐵 ) ) ∈ ℤ ∧ ( ℑ ‘ ( 𝐴 + 𝐵 ) ) ∈ ℤ ) ) |
22 |
4 13 20 21
|
syl3anbrc |
⊢ ( ( 𝐴 ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i] ) → ( 𝐴 + 𝐵 ) ∈ ℤ[i] ) |