| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gzcn |
⊢ ( 𝐴 ∈ ℤ[i] → 𝐴 ∈ ℂ ) |
| 2 |
1
|
cjcld |
⊢ ( 𝐴 ∈ ℤ[i] → ( ∗ ‘ 𝐴 ) ∈ ℂ ) |
| 3 |
1
|
recjd |
⊢ ( 𝐴 ∈ ℤ[i] → ( ℜ ‘ ( ∗ ‘ 𝐴 ) ) = ( ℜ ‘ 𝐴 ) ) |
| 4 |
|
elgz |
⊢ ( 𝐴 ∈ ℤ[i] ↔ ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ℤ ∧ ( ℑ ‘ 𝐴 ) ∈ ℤ ) ) |
| 5 |
4
|
simp2bi |
⊢ ( 𝐴 ∈ ℤ[i] → ( ℜ ‘ 𝐴 ) ∈ ℤ ) |
| 6 |
3 5
|
eqeltrd |
⊢ ( 𝐴 ∈ ℤ[i] → ( ℜ ‘ ( ∗ ‘ 𝐴 ) ) ∈ ℤ ) |
| 7 |
1
|
imcjd |
⊢ ( 𝐴 ∈ ℤ[i] → ( ℑ ‘ ( ∗ ‘ 𝐴 ) ) = - ( ℑ ‘ 𝐴 ) ) |
| 8 |
4
|
simp3bi |
⊢ ( 𝐴 ∈ ℤ[i] → ( ℑ ‘ 𝐴 ) ∈ ℤ ) |
| 9 |
8
|
znegcld |
⊢ ( 𝐴 ∈ ℤ[i] → - ( ℑ ‘ 𝐴 ) ∈ ℤ ) |
| 10 |
7 9
|
eqeltrd |
⊢ ( 𝐴 ∈ ℤ[i] → ( ℑ ‘ ( ∗ ‘ 𝐴 ) ) ∈ ℤ ) |
| 11 |
|
elgz |
⊢ ( ( ∗ ‘ 𝐴 ) ∈ ℤ[i] ↔ ( ( ∗ ‘ 𝐴 ) ∈ ℂ ∧ ( ℜ ‘ ( ∗ ‘ 𝐴 ) ) ∈ ℤ ∧ ( ℑ ‘ ( ∗ ‘ 𝐴 ) ) ∈ ℤ ) ) |
| 12 |
2 6 10 11
|
syl3anbrc |
⊢ ( 𝐴 ∈ ℤ[i] → ( ∗ ‘ 𝐴 ) ∈ ℤ[i] ) |