| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gzcn | ⊢ ( 𝐴  ∈  ℤ[i]  →  𝐴  ∈  ℂ ) | 
						
							| 2 | 1 | cjcld | ⊢ ( 𝐴  ∈  ℤ[i]  →  ( ∗ ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 3 | 1 | recjd | ⊢ ( 𝐴  ∈  ℤ[i]  →  ( ℜ ‘ ( ∗ ‘ 𝐴 ) )  =  ( ℜ ‘ 𝐴 ) ) | 
						
							| 4 |  | elgz | ⊢ ( 𝐴  ∈  ℤ[i]  ↔  ( 𝐴  ∈  ℂ  ∧  ( ℜ ‘ 𝐴 )  ∈  ℤ  ∧  ( ℑ ‘ 𝐴 )  ∈  ℤ ) ) | 
						
							| 5 | 4 | simp2bi | ⊢ ( 𝐴  ∈  ℤ[i]  →  ( ℜ ‘ 𝐴 )  ∈  ℤ ) | 
						
							| 6 | 3 5 | eqeltrd | ⊢ ( 𝐴  ∈  ℤ[i]  →  ( ℜ ‘ ( ∗ ‘ 𝐴 ) )  ∈  ℤ ) | 
						
							| 7 | 1 | imcjd | ⊢ ( 𝐴  ∈  ℤ[i]  →  ( ℑ ‘ ( ∗ ‘ 𝐴 ) )  =  - ( ℑ ‘ 𝐴 ) ) | 
						
							| 8 | 4 | simp3bi | ⊢ ( 𝐴  ∈  ℤ[i]  →  ( ℑ ‘ 𝐴 )  ∈  ℤ ) | 
						
							| 9 | 8 | znegcld | ⊢ ( 𝐴  ∈  ℤ[i]  →  - ( ℑ ‘ 𝐴 )  ∈  ℤ ) | 
						
							| 10 | 7 9 | eqeltrd | ⊢ ( 𝐴  ∈  ℤ[i]  →  ( ℑ ‘ ( ∗ ‘ 𝐴 ) )  ∈  ℤ ) | 
						
							| 11 |  | elgz | ⊢ ( ( ∗ ‘ 𝐴 )  ∈  ℤ[i]  ↔  ( ( ∗ ‘ 𝐴 )  ∈  ℂ  ∧  ( ℜ ‘ ( ∗ ‘ 𝐴 ) )  ∈  ℤ  ∧  ( ℑ ‘ ( ∗ ‘ 𝐴 ) )  ∈  ℤ ) ) | 
						
							| 12 | 2 6 10 11 | syl3anbrc | ⊢ ( 𝐴  ∈  ℤ[i]  →  ( ∗ ‘ 𝐴 )  ∈  ℤ[i] ) |