Metamath Proof Explorer


Theorem gznegcl

Description: The gaussian integers are closed under negation. (Contributed by Mario Carneiro, 14-Jul-2014)

Ref Expression
Assertion gznegcl ( 𝐴 ∈ ℤ[i] → - 𝐴 ∈ ℤ[i] )

Proof

Step Hyp Ref Expression
1 gzcn ( 𝐴 ∈ ℤ[i] → 𝐴 ∈ ℂ )
2 1 negcld ( 𝐴 ∈ ℤ[i] → - 𝐴 ∈ ℂ )
3 1 renegd ( 𝐴 ∈ ℤ[i] → ( ℜ ‘ - 𝐴 ) = - ( ℜ ‘ 𝐴 ) )
4 elgz ( 𝐴 ∈ ℤ[i] ↔ ( 𝐴 ∈ ℂ ∧ ( ℜ ‘ 𝐴 ) ∈ ℤ ∧ ( ℑ ‘ 𝐴 ) ∈ ℤ ) )
5 4 simp2bi ( 𝐴 ∈ ℤ[i] → ( ℜ ‘ 𝐴 ) ∈ ℤ )
6 5 znegcld ( 𝐴 ∈ ℤ[i] → - ( ℜ ‘ 𝐴 ) ∈ ℤ )
7 3 6 eqeltrd ( 𝐴 ∈ ℤ[i] → ( ℜ ‘ - 𝐴 ) ∈ ℤ )
8 1 imnegd ( 𝐴 ∈ ℤ[i] → ( ℑ ‘ - 𝐴 ) = - ( ℑ ‘ 𝐴 ) )
9 4 simp3bi ( 𝐴 ∈ ℤ[i] → ( ℑ ‘ 𝐴 ) ∈ ℤ )
10 9 znegcld ( 𝐴 ∈ ℤ[i] → - ( ℑ ‘ 𝐴 ) ∈ ℤ )
11 8 10 eqeltrd ( 𝐴 ∈ ℤ[i] → ( ℑ ‘ - 𝐴 ) ∈ ℤ )
12 elgz ( - 𝐴 ∈ ℤ[i] ↔ ( - 𝐴 ∈ ℂ ∧ ( ℜ ‘ - 𝐴 ) ∈ ℤ ∧ ( ℑ ‘ - 𝐴 ) ∈ ℤ ) )
13 2 7 11 12 syl3anbrc ( 𝐴 ∈ ℤ[i] → - 𝐴 ∈ ℤ[i] )