Description: Construct a gaussian integer from real and imaginary parts. (Contributed by Mario Carneiro, 16-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | gzreim | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 + ( i · 𝐵 ) ) ∈ ℤ[i] ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | zgz | ⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℤ[i] ) | |
| 2 | igz | ⊢ i ∈ ℤ[i] | |
| 3 | zgz | ⊢ ( 𝐵 ∈ ℤ → 𝐵 ∈ ℤ[i] ) | |
| 4 | gzmulcl | ⊢ ( ( i ∈ ℤ[i] ∧ 𝐵 ∈ ℤ[i] ) → ( i · 𝐵 ) ∈ ℤ[i] ) | |
| 5 | 2 3 4 | sylancr | ⊢ ( 𝐵 ∈ ℤ → ( i · 𝐵 ) ∈ ℤ[i] ) | 
| 6 | gzaddcl | ⊢ ( ( 𝐴 ∈ ℤ[i] ∧ ( i · 𝐵 ) ∈ ℤ[i] ) → ( 𝐴 + ( i · 𝐵 ) ) ∈ ℤ[i] ) | |
| 7 | 1 5 6 | syl2an | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 + ( i · 𝐵 ) ) ∈ ℤ[i] ) |