| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gzrng.1 | ⊢ 𝑍  =  ( ℂfld  ↾s  ℤ[i] ) | 
						
							| 2 |  | gzsubrg | ⊢ ℤ[i]  ∈  ( SubRing ‘ ℂfld ) | 
						
							| 3 | 1 | subrgbas | ⊢ ( ℤ[i]  ∈  ( SubRing ‘ ℂfld )  →  ℤ[i]  =  ( Base ‘ 𝑍 ) ) | 
						
							| 4 | 2 3 | ax-mp | ⊢ ℤ[i]  =  ( Base ‘ 𝑍 ) | 
						
							| 5 |  | eqid | ⊢ ( Unit ‘ 𝑍 )  =  ( Unit ‘ 𝑍 ) | 
						
							| 6 | 4 5 | unitcl | ⊢ ( 𝐴  ∈  ( Unit ‘ 𝑍 )  →  𝐴  ∈  ℤ[i] ) | 
						
							| 7 |  | eqid | ⊢ ( invr ‘ ℂfld )  =  ( invr ‘ ℂfld ) | 
						
							| 8 |  | eqid | ⊢ ( invr ‘ 𝑍 )  =  ( invr ‘ 𝑍 ) | 
						
							| 9 | 1 7 5 8 | subrginv | ⊢ ( ( ℤ[i]  ∈  ( SubRing ‘ ℂfld )  ∧  𝐴  ∈  ( Unit ‘ 𝑍 ) )  →  ( ( invr ‘ ℂfld ) ‘ 𝐴 )  =  ( ( invr ‘ 𝑍 ) ‘ 𝐴 ) ) | 
						
							| 10 | 2 9 | mpan | ⊢ ( 𝐴  ∈  ( Unit ‘ 𝑍 )  →  ( ( invr ‘ ℂfld ) ‘ 𝐴 )  =  ( ( invr ‘ 𝑍 ) ‘ 𝐴 ) ) | 
						
							| 11 |  | gzcn | ⊢ ( 𝐴  ∈  ℤ[i]  →  𝐴  ∈  ℂ ) | 
						
							| 12 | 6 11 | syl | ⊢ ( 𝐴  ∈  ( Unit ‘ 𝑍 )  →  𝐴  ∈  ℂ ) | 
						
							| 13 |  | 0red | ⊢ ( 𝐴  ∈  ( Unit ‘ 𝑍 )  →  0  ∈  ℝ ) | 
						
							| 14 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 15 | 14 | a1i | ⊢ ( 𝐴  ∈  ( Unit ‘ 𝑍 )  →  1  ∈  ℝ ) | 
						
							| 16 | 12 | abscld | ⊢ ( 𝐴  ∈  ( Unit ‘ 𝑍 )  →  ( abs ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 17 |  | 0lt1 | ⊢ 0  <  1 | 
						
							| 18 | 17 | a1i | ⊢ ( 𝐴  ∈  ( Unit ‘ 𝑍 )  →  0  <  1 ) | 
						
							| 19 | 1 | gzrngunitlem | ⊢ ( 𝐴  ∈  ( Unit ‘ 𝑍 )  →  1  ≤  ( abs ‘ 𝐴 ) ) | 
						
							| 20 | 13 15 16 18 19 | ltletrd | ⊢ ( 𝐴  ∈  ( Unit ‘ 𝑍 )  →  0  <  ( abs ‘ 𝐴 ) ) | 
						
							| 21 | 20 | gt0ne0d | ⊢ ( 𝐴  ∈  ( Unit ‘ 𝑍 )  →  ( abs ‘ 𝐴 )  ≠  0 ) | 
						
							| 22 | 12 | abs00ad | ⊢ ( 𝐴  ∈  ( Unit ‘ 𝑍 )  →  ( ( abs ‘ 𝐴 )  =  0  ↔  𝐴  =  0 ) ) | 
						
							| 23 | 22 | necon3bid | ⊢ ( 𝐴  ∈  ( Unit ‘ 𝑍 )  →  ( ( abs ‘ 𝐴 )  ≠  0  ↔  𝐴  ≠  0 ) ) | 
						
							| 24 | 21 23 | mpbid | ⊢ ( 𝐴  ∈  ( Unit ‘ 𝑍 )  →  𝐴  ≠  0 ) | 
						
							| 25 |  | cnfldinv | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  →  ( ( invr ‘ ℂfld ) ‘ 𝐴 )  =  ( 1  /  𝐴 ) ) | 
						
							| 26 | 12 24 25 | syl2anc | ⊢ ( 𝐴  ∈  ( Unit ‘ 𝑍 )  →  ( ( invr ‘ ℂfld ) ‘ 𝐴 )  =  ( 1  /  𝐴 ) ) | 
						
							| 27 | 10 26 | eqtr3d | ⊢ ( 𝐴  ∈  ( Unit ‘ 𝑍 )  →  ( ( invr ‘ 𝑍 ) ‘ 𝐴 )  =  ( 1  /  𝐴 ) ) | 
						
							| 28 | 1 | subrgring | ⊢ ( ℤ[i]  ∈  ( SubRing ‘ ℂfld )  →  𝑍  ∈  Ring ) | 
						
							| 29 | 2 28 | ax-mp | ⊢ 𝑍  ∈  Ring | 
						
							| 30 | 5 8 | unitinvcl | ⊢ ( ( 𝑍  ∈  Ring  ∧  𝐴  ∈  ( Unit ‘ 𝑍 ) )  →  ( ( invr ‘ 𝑍 ) ‘ 𝐴 )  ∈  ( Unit ‘ 𝑍 ) ) | 
						
							| 31 | 29 30 | mpan | ⊢ ( 𝐴  ∈  ( Unit ‘ 𝑍 )  →  ( ( invr ‘ 𝑍 ) ‘ 𝐴 )  ∈  ( Unit ‘ 𝑍 ) ) | 
						
							| 32 | 27 31 | eqeltrrd | ⊢ ( 𝐴  ∈  ( Unit ‘ 𝑍 )  →  ( 1  /  𝐴 )  ∈  ( Unit ‘ 𝑍 ) ) | 
						
							| 33 | 1 | gzrngunitlem | ⊢ ( ( 1  /  𝐴 )  ∈  ( Unit ‘ 𝑍 )  →  1  ≤  ( abs ‘ ( 1  /  𝐴 ) ) ) | 
						
							| 34 | 32 33 | syl | ⊢ ( 𝐴  ∈  ( Unit ‘ 𝑍 )  →  1  ≤  ( abs ‘ ( 1  /  𝐴 ) ) ) | 
						
							| 35 |  | 1cnd | ⊢ ( 𝐴  ∈  ( Unit ‘ 𝑍 )  →  1  ∈  ℂ ) | 
						
							| 36 | 35 12 24 | absdivd | ⊢ ( 𝐴  ∈  ( Unit ‘ 𝑍 )  →  ( abs ‘ ( 1  /  𝐴 ) )  =  ( ( abs ‘ 1 )  /  ( abs ‘ 𝐴 ) ) ) | 
						
							| 37 | 34 36 | breqtrd | ⊢ ( 𝐴  ∈  ( Unit ‘ 𝑍 )  →  1  ≤  ( ( abs ‘ 1 )  /  ( abs ‘ 𝐴 ) ) ) | 
						
							| 38 |  | 1div1e1 | ⊢ ( 1  /  1 )  =  1 | 
						
							| 39 |  | abs1 | ⊢ ( abs ‘ 1 )  =  1 | 
						
							| 40 | 39 | eqcomi | ⊢ 1  =  ( abs ‘ 1 ) | 
						
							| 41 | 40 | oveq1i | ⊢ ( 1  /  ( abs ‘ 𝐴 ) )  =  ( ( abs ‘ 1 )  /  ( abs ‘ 𝐴 ) ) | 
						
							| 42 | 37 38 41 | 3brtr4g | ⊢ ( 𝐴  ∈  ( Unit ‘ 𝑍 )  →  ( 1  /  1 )  ≤  ( 1  /  ( abs ‘ 𝐴 ) ) ) | 
						
							| 43 |  | lerec | ⊢ ( ( ( ( abs ‘ 𝐴 )  ∈  ℝ  ∧  0  <  ( abs ‘ 𝐴 ) )  ∧  ( 1  ∈  ℝ  ∧  0  <  1 ) )  →  ( ( abs ‘ 𝐴 )  ≤  1  ↔  ( 1  /  1 )  ≤  ( 1  /  ( abs ‘ 𝐴 ) ) ) ) | 
						
							| 44 | 16 20 15 18 43 | syl22anc | ⊢ ( 𝐴  ∈  ( Unit ‘ 𝑍 )  →  ( ( abs ‘ 𝐴 )  ≤  1  ↔  ( 1  /  1 )  ≤  ( 1  /  ( abs ‘ 𝐴 ) ) ) ) | 
						
							| 45 | 42 44 | mpbird | ⊢ ( 𝐴  ∈  ( Unit ‘ 𝑍 )  →  ( abs ‘ 𝐴 )  ≤  1 ) | 
						
							| 46 |  | letri3 | ⊢ ( ( ( abs ‘ 𝐴 )  ∈  ℝ  ∧  1  ∈  ℝ )  →  ( ( abs ‘ 𝐴 )  =  1  ↔  ( ( abs ‘ 𝐴 )  ≤  1  ∧  1  ≤  ( abs ‘ 𝐴 ) ) ) ) | 
						
							| 47 | 16 14 46 | sylancl | ⊢ ( 𝐴  ∈  ( Unit ‘ 𝑍 )  →  ( ( abs ‘ 𝐴 )  =  1  ↔  ( ( abs ‘ 𝐴 )  ≤  1  ∧  1  ≤  ( abs ‘ 𝐴 ) ) ) ) | 
						
							| 48 | 45 19 47 | mpbir2and | ⊢ ( 𝐴  ∈  ( Unit ‘ 𝑍 )  →  ( abs ‘ 𝐴 )  =  1 ) | 
						
							| 49 | 6 48 | jca | ⊢ ( 𝐴  ∈  ( Unit ‘ 𝑍 )  →  ( 𝐴  ∈  ℤ[i]  ∧  ( abs ‘ 𝐴 )  =  1 ) ) | 
						
							| 50 | 11 | adantr | ⊢ ( ( 𝐴  ∈  ℤ[i]  ∧  ( abs ‘ 𝐴 )  =  1 )  →  𝐴  ∈  ℂ ) | 
						
							| 51 |  | simpr | ⊢ ( ( 𝐴  ∈  ℤ[i]  ∧  ( abs ‘ 𝐴 )  =  1 )  →  ( abs ‘ 𝐴 )  =  1 ) | 
						
							| 52 |  | ax-1ne0 | ⊢ 1  ≠  0 | 
						
							| 53 | 52 | a1i | ⊢ ( ( 𝐴  ∈  ℤ[i]  ∧  ( abs ‘ 𝐴 )  =  1 )  →  1  ≠  0 ) | 
						
							| 54 | 51 53 | eqnetrd | ⊢ ( ( 𝐴  ∈  ℤ[i]  ∧  ( abs ‘ 𝐴 )  =  1 )  →  ( abs ‘ 𝐴 )  ≠  0 ) | 
						
							| 55 |  | fveq2 | ⊢ ( 𝐴  =  0  →  ( abs ‘ 𝐴 )  =  ( abs ‘ 0 ) ) | 
						
							| 56 |  | abs0 | ⊢ ( abs ‘ 0 )  =  0 | 
						
							| 57 | 55 56 | eqtrdi | ⊢ ( 𝐴  =  0  →  ( abs ‘ 𝐴 )  =  0 ) | 
						
							| 58 | 57 | necon3i | ⊢ ( ( abs ‘ 𝐴 )  ≠  0  →  𝐴  ≠  0 ) | 
						
							| 59 | 54 58 | syl | ⊢ ( ( 𝐴  ∈  ℤ[i]  ∧  ( abs ‘ 𝐴 )  =  1 )  →  𝐴  ≠  0 ) | 
						
							| 60 |  | eldifsn | ⊢ ( 𝐴  ∈  ( ℂ  ∖  { 0 } )  ↔  ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 ) ) | 
						
							| 61 | 50 59 60 | sylanbrc | ⊢ ( ( 𝐴  ∈  ℤ[i]  ∧  ( abs ‘ 𝐴 )  =  1 )  →  𝐴  ∈  ( ℂ  ∖  { 0 } ) ) | 
						
							| 62 |  | simpl | ⊢ ( ( 𝐴  ∈  ℤ[i]  ∧  ( abs ‘ 𝐴 )  =  1 )  →  𝐴  ∈  ℤ[i] ) | 
						
							| 63 | 50 59 25 | syl2anc | ⊢ ( ( 𝐴  ∈  ℤ[i]  ∧  ( abs ‘ 𝐴 )  =  1 )  →  ( ( invr ‘ ℂfld ) ‘ 𝐴 )  =  ( 1  /  𝐴 ) ) | 
						
							| 64 | 50 | absvalsqd | ⊢ ( ( 𝐴  ∈  ℤ[i]  ∧  ( abs ‘ 𝐴 )  =  1 )  →  ( ( abs ‘ 𝐴 ) ↑ 2 )  =  ( 𝐴  ·  ( ∗ ‘ 𝐴 ) ) ) | 
						
							| 65 | 51 | oveq1d | ⊢ ( ( 𝐴  ∈  ℤ[i]  ∧  ( abs ‘ 𝐴 )  =  1 )  →  ( ( abs ‘ 𝐴 ) ↑ 2 )  =  ( 1 ↑ 2 ) ) | 
						
							| 66 |  | sq1 | ⊢ ( 1 ↑ 2 )  =  1 | 
						
							| 67 | 65 66 | eqtrdi | ⊢ ( ( 𝐴  ∈  ℤ[i]  ∧  ( abs ‘ 𝐴 )  =  1 )  →  ( ( abs ‘ 𝐴 ) ↑ 2 )  =  1 ) | 
						
							| 68 | 64 67 | eqtr3d | ⊢ ( ( 𝐴  ∈  ℤ[i]  ∧  ( abs ‘ 𝐴 )  =  1 )  →  ( 𝐴  ·  ( ∗ ‘ 𝐴 ) )  =  1 ) | 
						
							| 69 | 68 | oveq1d | ⊢ ( ( 𝐴  ∈  ℤ[i]  ∧  ( abs ‘ 𝐴 )  =  1 )  →  ( ( 𝐴  ·  ( ∗ ‘ 𝐴 ) )  /  𝐴 )  =  ( 1  /  𝐴 ) ) | 
						
							| 70 | 50 | cjcld | ⊢ ( ( 𝐴  ∈  ℤ[i]  ∧  ( abs ‘ 𝐴 )  =  1 )  →  ( ∗ ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 71 | 70 50 59 | divcan3d | ⊢ ( ( 𝐴  ∈  ℤ[i]  ∧  ( abs ‘ 𝐴 )  =  1 )  →  ( ( 𝐴  ·  ( ∗ ‘ 𝐴 ) )  /  𝐴 )  =  ( ∗ ‘ 𝐴 ) ) | 
						
							| 72 | 63 69 71 | 3eqtr2d | ⊢ ( ( 𝐴  ∈  ℤ[i]  ∧  ( abs ‘ 𝐴 )  =  1 )  →  ( ( invr ‘ ℂfld ) ‘ 𝐴 )  =  ( ∗ ‘ 𝐴 ) ) | 
						
							| 73 |  | gzcjcl | ⊢ ( 𝐴  ∈  ℤ[i]  →  ( ∗ ‘ 𝐴 )  ∈  ℤ[i] ) | 
						
							| 74 | 73 | adantr | ⊢ ( ( 𝐴  ∈  ℤ[i]  ∧  ( abs ‘ 𝐴 )  =  1 )  →  ( ∗ ‘ 𝐴 )  ∈  ℤ[i] ) | 
						
							| 75 | 72 74 | eqeltrd | ⊢ ( ( 𝐴  ∈  ℤ[i]  ∧  ( abs ‘ 𝐴 )  =  1 )  →  ( ( invr ‘ ℂfld ) ‘ 𝐴 )  ∈  ℤ[i] ) | 
						
							| 76 |  | cnfldbas | ⊢ ℂ  =  ( Base ‘ ℂfld ) | 
						
							| 77 |  | cnfld0 | ⊢ 0  =  ( 0g ‘ ℂfld ) | 
						
							| 78 |  | cndrng | ⊢ ℂfld  ∈  DivRing | 
						
							| 79 | 76 77 78 | drngui | ⊢ ( ℂ  ∖  { 0 } )  =  ( Unit ‘ ℂfld ) | 
						
							| 80 | 1 79 5 7 | subrgunit | ⊢ ( ℤ[i]  ∈  ( SubRing ‘ ℂfld )  →  ( 𝐴  ∈  ( Unit ‘ 𝑍 )  ↔  ( 𝐴  ∈  ( ℂ  ∖  { 0 } )  ∧  𝐴  ∈  ℤ[i]  ∧  ( ( invr ‘ ℂfld ) ‘ 𝐴 )  ∈  ℤ[i] ) ) ) | 
						
							| 81 | 2 80 | ax-mp | ⊢ ( 𝐴  ∈  ( Unit ‘ 𝑍 )  ↔  ( 𝐴  ∈  ( ℂ  ∖  { 0 } )  ∧  𝐴  ∈  ℤ[i]  ∧  ( ( invr ‘ ℂfld ) ‘ 𝐴 )  ∈  ℤ[i] ) ) | 
						
							| 82 | 61 62 75 81 | syl3anbrc | ⊢ ( ( 𝐴  ∈  ℤ[i]  ∧  ( abs ‘ 𝐴 )  =  1 )  →  𝐴  ∈  ( Unit ‘ 𝑍 ) ) | 
						
							| 83 | 49 82 | impbii | ⊢ ( 𝐴  ∈  ( Unit ‘ 𝑍 )  ↔  ( 𝐴  ∈  ℤ[i]  ∧  ( abs ‘ 𝐴 )  =  1 ) ) |